hsp60 expression
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kavita Shirsath ◽  
Apeksha Joshi ◽  
Aliasgar Vohra ◽  
Ranjitsinh Devkar

AbstractEctopic expression of HSP60 in vascular cells is known to activate auto-immune response that is critical to atherogenic initiation. However, the pathogenic relevance of the aberrant HSP60 upregulation in intracellular signaling pathways associated with atherogenic consequences in vascular cells remains unclear. The aim of the present study was to determine the role of endogenous HSP60 in atherogenic transformation of endothelial cells and macrophages. After generating primary evidence of oxidized low density lipoprotein (OxLDL) induced HSP60 upregulation in human umbilical vein endothelial cells (HUVEC), its physiological relevance in high fat high fructose (HFHF) induced early atherogenic remodelling was investigated in C57BL/6J mice. Prominent HSP60 expression was recorded in tunica intima and media of thoracic aorta that showed hypertrophy, lumen dilation, elastin fragmentation and collagen deposition. Further, HSP60 overexpression was found to be prerequisite for its surface localization and secretion in HUVEC. eNOS downregulation and MCP-1, VCAM-1 and ICAM-1 upregulation with subsequent macrophage accumulation provided compelling evidences on HFHF induced endothelial dysfunction and activation that were also observed in OxLDL treated- and HSP60 overexpressing-HUVEC. OxLDL induced concomitant reduction in NO production and monocyte adhesion were prevented by HSP60 knockdown, implying towards HSP60 mediated possible regulation of the said genes. OxLDL induced HSP60 upregulation and secretion was also recorded in THP-1 derived macrophages (TDMs). HSP60 knockdown in TDMs accounted for higher OxLDL accumulation that correlated with altered scavenger receptors (SR-A1, CD36 and SR-B1) expression further culminating in M1 polarization. Collectively, the results highlight HSP60 upregulation as a critical vascular alteration that exerts differential regulatory role in atherogenic transformation of endothelial cells and macrophages.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Qiushi Huang ◽  
Wei Gao ◽  
Heng Mu ◽  
Ting Qin ◽  
Fan Long ◽  
...  

Acute gout is an inflammatory response induced by monosodium urate (MSU) crystals. HSP60 is a highly conserved stress protein that acts as a cellular “danger” signal for immune reactions. In this study, we aimed to investigate the role and molecular mechanism of HSP60 in gout. HSP60 expression was detected in peripheral blood mononuclear cells (PBMCs) and plasma of gout patients. The effect and molecular mechanism of HSP60 in gout were studied in MSU crystals treatment macrophages and C57BL/6 mice. JC-1 probe and MitoSOX Red were used to measure the mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS). HSP60 expression was significantly upregulated in the PBMCs and sera of patients with acute gout (AG) compared to those with intercritical gout (IG) or healthy controls (HCs). MSU crystals induced the expression and secretion of HSP60 in the macrophages. HSP60 knockdown or overexpression affects TLR4 and MyD88 expression, IκBα degradation, and the nuclear localization of NF-κB in MSU crystal-stimulated inflammation. Further, HSP60 facilitates MMP collapse and mtROS production and activates the NLRP3 inflammasome in MSU crystal-stimulated macrophages. In MSU crystal-induced arthritis mouse models pretreated with HSP60 vivo-morpholino, paw swelling, myeloperoxidase (MPO) activity, and inflammatory cell infiltration significantly decreased. Our study reveals that MSU crystal stimulates the expression of HSP60, which accelerates the TLR4-MyD88-NF-κB signaling pathway and exacerbates mitochondrial dysfunction.


Endocrinology ◽  
2020 ◽  
Author(s):  
Xuejiao Cui ◽  
Mingshi Huang ◽  
Shiwei Wang ◽  
Na Zhao ◽  
Ting Huang ◽  
...  

Abstract Exosomes are extracellular vesicles that can participate in autoimmune diseases. The purpose of this study was to explore whether circulating exosomes are involved in Graves’ disease (GD) pathogenesis. In this study, serum exosomes were extracted from 26 healthy controls (HC-EXO), 26 GD patients (GD-EXO), and 7 Graves’ ophthalmopathy patients (GO-EXO). For each group, the total protein content was detected, and thyrotropin receptor (TSHR), insulin-like growth factor 1 receptor (IGF-1R), HSP60, and CD63 expression were analyzed by Western blotting (WB). Healthy volunteer-derived peripheral blood mononuclear cells (PBMCs) and HC-EXO or GD-EXO were cocultured for 24 h, and immunofluorescence was used to observe the locations of the exosomes and Toll-like receptor (TLR) 2/3. CD11c+TLR2+ and CD11c+TLR3+ cell percentages were determined by flow cytometry. Myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain-containing adaptor inducing interferon-β (TRIF) and p-P65 expression were analyzed by WB. IL-6 and IL-1β supernatant levels were detected using enzyme-linked immunosorbent assay (ELISA). The results showed that the total protein concentration was similar among GD-EXO, GO-EXO and HC-EXO. IGF-1R and HSP60 expression was significantly higher in GD-EXO and GO-EXO than in HC-EXO. After coculturing PBMCs with GD-EXO or HC-EXO for 24 h, GD-EXO could bind to TLR2/3. GD-EXO significantly increased CD11c+TLR2+ and CD11c+TLR3+ cell percentages; MyD88, TRIF, and p-P65 protein expression; and IL-6 and IL-1β levels. In conclusion, we first demonstrated that GD-EXO and GO-EXO highly expressed IGF-1R and HSP60. GD-EXO may induce an inflammatory response through the TLR/NF-κB signaling pathway and be involved in the pathogenesis of GD.


2020 ◽  
Vol 36 (12) ◽  
pp. 1002-1009
Author(s):  
Ke Gao ◽  
Chengfei Zhang ◽  
Yihong Tian ◽  
Sajid Naeem ◽  
Yingmei Zhang ◽  
...  

It is well-documented that lead (Pb) toxicity can affect almost all systems in living organisms. It can induce selective autophagy of mitochondria (mitophagy) by triggering reactive oxygen species production. Emerging evidence has suggested that Pb-induced autophagy can also be activated by the endoplasmic reticulum (ER) stress pathway. However, the interplay between ER stress and mitophagy remains to be elucidated. In this study, human embryonic kidney HEK293 cells were employed to investigate the role of ER stress in Pb-induced mitophagy. The results showed that the cell viability was decreased and cell damage was induced after exposure to Pb (0, 0.5, 1, 2, and 4 mM) for 24 h in a dose-dependent manner. Moreover, the expression of LC3-Ⅱ was significantly increased, and the expression of HSP60 was dramatically decreased after exposure to 1 mM and 2 mM Pb, indicating the induction of mitophagy following Pb exposure. Meanwhile, the expressions of activating transcription factor 6, inositol-requiring protein-1α, CCAAT/enhancer binding protein homologous protein, and glucose-regulated protein 78 were dramatically increased after Pb treatment, signifying the initiation of ER stress. Notably, the mitophagic effect was significantly compromised when ER stress was inhibited by 0.5 mM 4-phenylbutyrate, which was evidenced by lesser decreases in HSP60 expression and level of LC3-Ⅱ, suggesting Pb-induced mitophagy may be activated by the ER stress. Taken together, these findings provide a better understanding of Pb toxicity and suggest that Pb-induced ER stress may play a regulatory role in the upstream of mitophagy.


2020 ◽  
Vol 319 (4) ◽  
pp. H793-H796 ◽  
Author(s):  
Hrvoje Jakovac

The 60-kDa heat shock protein (HSP60) is a chaperone essential for mitochondrial proteostasis ensuring thus sufficient aerobic energy production. In pathological conditions, HSP60 can be translocated from the mitochondria and excreted from the cell. In turn, the extracellular HSP60 has a strong ability to trigger and enhance inflammatory response with marked proinflammatory cytokine induction, which is mainly mediated by Toll-like receptor binding. Previous studies have found increased circulating levels of HSP60 in hypertensive patients, as well as enhanced HSP60 expression and membrane translocation in the hypertrophic myocardium. These observations are of particular interest, since they could provide a possible pathophysiological explanation of the severe course and worse outcome of severe acute respiratory syndrome coronavirus 2 infection in hypertensive patients, repeatedly reported during the recent coronavirus disease 2019 (COVID-19) pandemic and related to hyperinflammatory response and cytokine storm development during the third phase of the disease. In this regard, pharmacological inhibition of HSP60 could attract attention to potentially ameliorate inappropriate inflammatory reaction in severe COVID-19 patients. Among HSP60 antagonizing drugs, mizoribine is the most intriguing, since it is clinically approved and exerts antiviral activity. However, this topic requires to be further scrutinized.


2020 ◽  
Author(s):  
Wei Gao ◽  
Qiushi Huang ◽  
Ting Qin ◽  
Heng Mu ◽  
Fan Long ◽  
...  

Abstract Background Acute gout is an inflammatory response induced by monosodium urate (MSU) crystals. HSP60 is a highly conserved stress protein that acts as a cellular “danger” signal for immune reactions. In this study, we aimed to investigate the role and molecular mechanism of HSP60 in the gout. Methods HSP60 expression was detected in peripheral blood mononuclear cells (PBMCs) and plasma of gout patients. The effect and mechanism of HSP60 in gout were studied in MSU crystals treatment macrophages and C57BL/6 mice. JC-1 probe and MitoSOX Red were used to measure the mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS). Results HSP60 expression was significantly upregulated in the PBMCs and sera of patients with acute gout (AG) compared to those with inter-critical gout (IG) or healthy controls (HCs). MSU crystals induced expression and secretion of HSP60 in the macrophages. HSP60 knockdown or over-expression affects TLR4 and MyD88 expression, IκBα degradation and the nuclear localization of NF-κB in MSU crystal-stimulated inflammation. Further, HSP60 facilitates MMP collapse and mtROS production, and activates the NLRP3 inflammasome in MSU crystal-stimulated macrophages. In MSU crystal-induced arthritis and peritonitis mouse models pre-treated with HSP60 vivo-morpholino, paw swelling, ankle joint swelling, myeloperoxidase (MPO) activity and inflammatory cell infiltration significantly decreased. Conclusion Our study revealed that MSU crystal stimulates the expression of HSP60 which accelerates TLR4-MyD88-NF-κB signaling pathway and exacerbates mitochondrial dysfunction.


2020 ◽  
Vol 64 (2) ◽  
pp. 67-75 ◽  
Author(s):  
Ting Xiao ◽  
Xiuci Liang ◽  
Hailan Liu ◽  
Feng Zhang ◽  
Wen Meng ◽  
...  

Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are associated with hepatic steatosis and insulin resistance. Molecular mechanisms underlying ER stress and/or mitochondrial dysfunction that cause metabolic disorders and hepatic steatosis remain to be fully understood. Here, we found that a high fat diet (HFD) or chemically induced ER stress can stimulate mitochondrial stress protein HSP60 expression, impair mitochondrial respiration, and decrease mitochondrial membrane potential in mouse hepatocytes. HSP60 overexpression promotes ER stress and hepatic lipogenic protein expression and impairs insulin signaling in mouse hepatocytes. Mechanistically, HSP60 regulates ER stress-induced hepatic lipogenesis via the mTORC1-SREBP1 signaling pathway. These results suggest that HSP60 is an important ER and mitochondrial stress cross-talking protein and may control ER stress-induced hepatic lipogenesis and insulin resistance.


2020 ◽  
Vol 156 ◽  
pp. 101835 ◽  
Author(s):  
Alice Rotini ◽  
Chiara Conte ◽  
Davide Seveso ◽  
Simone Montano ◽  
Paolo Galli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document