scholarly journals The attachment of Sso7d-like protein improves processivity and resistance to inhibitors of M-MuLV reverse transcriptase

2020 ◽  
Author(s):  
Igor P. Oscorbin ◽  
Pei Fong Wong ◽  
Ulyana A. Boyarskikh ◽  
Evgeny A. Khrapov ◽  
Maksim L. Filipenko

ABSTRACTReverse transcriptases, RTs, are a standard tool in both fundamental studies and diagnostics used for transcriptome profiling, virus RNA testing and other tasks. RTs should possess elevated temperature optimum, high thermal stability, processivity, and tolerance to contaminants originating from the biological substances under analysis or the purification reagents. Here, we have constructed a set of chimeric RTs, based on the combination of MuLV-RT and DNA-binding domains: the DNA-binding domain of DNA ligase Pyrococcus abyssi and Sto7d protein, Sso7d counterpart, from Sulfolobus tokodaii. Chimeric RTs showed the same optimal temperature and the efficacy of terminal transferase reaction as the original M-MuLV RT. Processivity and the efficiency in cDNA synthesis of the chimeric RT with Sto7d at C-end were increased several-fold. The attachment of Sto7d enhanced the M-MuLV RT tolerance to the most common amplification inhibitors: NaCl, urea, guanidinium chloride, formamide, components of human whole blood, and human blood plasma. Thus, fusing M-MuLV RT with an additional domain resulted in more robust and efficient RTs.

2014 ◽  
Vol 289 (31) ◽  
pp. 21605-21616 ◽  
Author(s):  
Shuo Wang ◽  
Miles H. Linde ◽  
Manoj Munde ◽  
Victor D. Carvalho ◽  
W. David Wilson ◽  
...  

2003 ◽  
Vol 278 (25) ◽  
pp. 22586-22595 ◽  
Author(s):  
Alpana Ray ◽  
Papiya Ray ◽  
Nicole Guthrie ◽  
Arvind Shakya ◽  
Deepak Kumar ◽  
...  

2005 ◽  
Vol 79 (13) ◽  
pp. 8661-8664 ◽  
Author(s):  
Stephen Schuck ◽  
Arne Stenlund

ABSTRACT Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.


2010 ◽  
Vol 30 (22) ◽  
pp. 5325-5334 ◽  
Author(s):  
Meghan T. Mitchell ◽  
Jasmine S. Smith ◽  
Mark Mason ◽  
Sandy Harper ◽  
David W. Speicher ◽  
...  

ABSTRACT The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.


2012 ◽  
Vol 30 (4) ◽  
pp. 379-393 ◽  
Author(s):  
Szymon Pakuła ◽  
Marek Orłowski ◽  
Grzegorz Rymarczyk ◽  
Tomasz Krusiński ◽  
Michał Jakób ◽  
...  

2006 ◽  
Vol 26 (16) ◽  
pp. 5969-5982 ◽  
Author(s):  
Benoit Miotto ◽  
Kevin Struhl

ABSTRACT bZIP DNA-binding domains are targets for viral and cellular proteins that function as transcriptional coactivators. Here, we show that MBF1 and the related Chameau and HBO1 histone acetylases interact with distinct subgroups of bZIP proteins, whereas pX does not discriminate. Selectivity of Chameau and MBF1 for bZIP proteins is mediated by residues in the basic region that lie on the opposite surface from residues that contact DNA. Chameau functions as a specific coactivator for the AP-1 class of bZIP proteins via two arginine residues. A conserved glutamic acid/glutamine in the linker region underlies MBF1 specificity for a subgroup of bZIP factors. Chameau and MBF1 cannot synergistically coactivate transcription due to competitive interactions with the basic region, but either protein can synergistically coactivate with pX. Analysis of Jun derivatives that selectively interact with these coactivators reveals that MBF1 is crucial for the response to oxidative stress, whereas Chameau is important for the response to chemical and osmotic stress. Thus, the bZIP domain mediates selective interactions with coactivators and hence differential regulation of gene expression.


1993 ◽  
Vol 13 (2) ◽  
pp. 852-860
Author(s):  
M B Toledano ◽  
D Ghosh ◽  
F Trinh ◽  
W J Leonard

We previously reported that either oxidation or alkylation of NF-kappa B in vitro abrogates DNA binding. We used this phenomenon to help elucidate structural determinants of NF-kappa B binding. We now demonstrate that Cys-62 of NF-kappa B p50 mediates the redox effect and lies within an N-terminal region required for DNA binding but not for dimerization. Several point mutations in this region confer a transdominant negative binding phenotype to p50. The region is highly conserved in all Rel family proteins, and we have determined that it is also critical for DNA binding of NF-kappa B p65. Replacement of the N-terminal region of p65 with the corresponding region from p50 changes its DNA-binding specificity towards that of p50. These data suggest that the N-terminal regions of p50 and p65 are critical for DNA binding and help determine the DNA-binding specificities of p50 and p65. We have defined within the N-terminal region a sequence motif, R(F/G)(R/K)YXCE, which is present in Rel family proteins and also in zinc finger proteins capable of binding to kappa B sites. The potential significance of this finding is discussed.


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 40 ◽  
Author(s):  
Antonia Denis ◽  
Mario Alberto Martínez-Núñez ◽  
Silvia Tenorio-Salgado ◽  
Ernesto Perez-Rueda

In recent years, there has been a large increase in the amount of experimental evidence for diverse archaeal organisms, and these findings allow for a comprehensive analysis of archaeal genetic organization. However, studies about regulatory mechanisms in this cellular domain are still limited. In this context, we identified a repertoire of 86 DNA-binding transcription factors (TFs) in the archaeon Pyrococcus furiosus DSM 3638, that are clustered into 32 evolutionary families. In structural terms, 45% of these proteins are composed of one structural domain, 41% have two domains, and 14% have three structural domains. The most abundant DNA-binding domain corresponds to the winged helix-turn-helix domain; with few alternative DNA-binding domains. We also identified seven regulons, which represent 13.5% (279 genes) of the total genes in this archaeon. These analyses increase our knowledge about gene regulation in P. furiosus DSM 3638 and provide additional clues for comprehensive modeling of transcriptional regulatory networks in the Archaea cellular domain.


Sign in / Sign up

Export Citation Format

Share Document