scholarly journals Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins

2020 ◽  
Author(s):  
Rahmatullah Roche ◽  
Sutanu Bhattacharya ◽  
Debswapna Bhattacharya

AbstractCrystallography and NMR system (CNS) is currently the de facto standard for fragment-free ab initio protein folding from inter-residue distance or contact maps. Despite its widespread use in protein structure prediction, CNS is a decade-old macromolecular structure determination system that was originally developed for solving macromolecular geometry from experimental restraints as opposed to predictive modeling driven by interaction map data. As such, the adaptation of the CNS experimental structure determination protocol for ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of computational protein structure prediction. In this paper, we propose a new CNS-free hierarchical structure modeling method called DConStruct for folding both soluble and membrane proteins driven by distance and contact information. Rigorous experimental validation shows that DConStruct attains much better reconstruction accuracy than CNS when tested with the same input contact map at varying contact thresholds. The hierarchical modeling with iterative self-correction employed in DConStruct scales at a much higher degree of folding accuracy than CNS with the increase in contact thresholds, ultimately approaching near-optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy of DConStruct can be further improved by exploiting distance-based hybrid interaction maps at tri-level thresholding, as demonstrated by the better performance of our method in folding difficult free modeling targets from the 12th and 13th rounds of the Critical Assessment of techniques for protein Structure Prediction (CASP) experiments compared to several popular CNS- and fragment-based approaches, some of which even using much finer-grained distance maps than ours. Additional large-scale benchmarking shows that DConStruct can significantly improve the folding accuracy of membrane proteins compared to a CNS-based approach. These results collectively demonstrate the feasibility of greatly improving the accuracy of ab initio protein folding by optimally exploiting the information encoded in inter-residue interaction maps beyond what is possible by CNS.Author summaryPredicting the folded and functional 3-dimensional structure of a protein molecule from its amino acid sequence is of central importance to structural biology. Recently, promising advances have been made in ab initio protein folding due to the reasonably accurate estimation of inter-residue interaction maps at increasingly higher resolutions that range from binary contacts to finer-grained distances. Despite the progress in predicting the interaction maps, approaches for turning the residue-residue interactions projected in these maps into their precise spatial positioning heavily rely on a decade-old experimental structure determination protocol that is not suitable for predictive modeling. This paper presents a new hierarchical structure modeling method, DConStruct, which can better exploit the information encoded in the interaction maps at multiple granularities, from binary contact maps to distance-based hybrid maps at tri-level thresholding, for improved ab initio folding. Multiple large-scale benchmarking experiments show that our proposed method can substantially improve the folding accuracy for both soluble and membrane proteins compared to state-of-the-art approaches. DConStruct is licensed under the GNU General Public License v3 and freely available at https://github.com/Bhattacharya-Lab/DConStruct.

2021 ◽  
Vol 17 (2) ◽  
pp. e1008753
Author(s):  
Rahmatullah Roche ◽  
Sutanu Bhattacharya ◽  
Debswapna Bhattacharya

Crystallography and NMR system (CNS) is currently a widely used method for fragment-free ab initio protein folding from inter-residue distance or contact maps. Despite its widespread use in protein structure prediction, CNS is a decade-old macromolecular structure determination system that was originally developed for solving macromolecular geometry from experimental restraints as opposed to predictive modeling driven by interaction map data. As such, the adaptation of the CNS experimental structure determination protocol for ab initio protein folding is intrinsically anomalous that may undermine the folding accuracy of computational protein structure prediction. In this paper, we propose a new CNS-free hierarchical structure modeling method called DConStruct for folding both soluble and membrane proteins driven by distance and contact information. Rigorous experimental validation shows that DConStruct attains much better reconstruction accuracy than CNS when tested with the same input contact map at varying contact thresholds. The hierarchical modeling with iterative self-correction employed in DConStruct scales at a much higher degree of folding accuracy than CNS with the increase in contact thresholds, ultimately approaching near-optimal reconstruction accuracy at higher-thresholded contact maps. The folding accuracy of DConStruct can be further improved by exploiting distance-based hybrid interaction maps at tri-level thresholding, as demonstrated by the better performance of our method in folding free modeling targets from the 12th and 13th rounds of the Critical Assessment of techniques for protein Structure Prediction (CASP) experiments compared to popular CNS- and fragment-based approaches and energy-minimization protocols, some of which even using much finer-grained distance maps than ours. Additional large-scale benchmarking shows that DConStruct can significantly improve the folding accuracy of membrane proteins compared to a CNS-based approach. These results collectively demonstrate the feasibility of greatly improving the accuracy of ab initio protein folding by optimally exploiting the information encoded in inter-residue interaction maps beyond what is possible by CNS.


2017 ◽  
Author(s):  
Badri Adhikari ◽  
Jianlin Cheng

AbstractBackgroundContact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support the contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed.ResultsWe develop an improved contact-driven protein modeling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain top five models. CONFOLD2 is benchmarked on various datasets including CASP11 and 12 datasets with publicly available predicted contacts and yields better performance than the popular CONFOLD method.ConclusionCONFOLD2 allows to quickly generate top five structural models for a protein sequence, when its secondary structures and contacts predictions at hand. CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/.


2003 ◽  
Vol 4 (4) ◽  
pp. 397-401 ◽  
Author(s):  
Xin Yuan ◽  
Yu Shao ◽  
Christopher Bystroff

2019 ◽  
Author(s):  
Rebecca F. Alford ◽  
Patrick J. Fleming ◽  
Karen G. Fleming ◽  
Jeffrey J. Gray

ABSTRACTProtein design is a powerful tool for elucidating mechanisms of function and engineering new therapeutics and nanotechnologies. While soluble protein design has advanced, membrane protein design remains challenging due to difficulties in modeling the lipid bilayer. In this work, we developed an implicit approach that captures the anisotropic structure, shape of water-filled pores, and nanoscale dimensions of membranes with different lipid compositions. The model improves performance in computational bench-marks against experimental targets including prediction of protein orientations in the bilayer, ΔΔG calculations, native structure dis-crimination, and native sequence recovery. When applied to de novo protein design, this approach designs sequences with an amino acid distribution near the native amino acid distribution in membrane proteins, overcoming a critical flaw in previous membrane models that were prone to generating leucine-rich designs. Further, the proteins designed in the new membrane model exhibit native-like features including interfacial aromatic side chains, hydrophobic lengths compatible with bilayer thickness, and polar pores. Our method advances high-resolution membrane protein structure prediction and design toward tackling key biological questions and engineering challenges.Significance StatementMembrane proteins participate in many life processes including transport, signaling, and catalysis. They constitute over 30% of all proteins and are targets for over 60% of pharmaceuticals. Computational design tools for membrane proteins will transform the interrogation of basic science questions such as membrane protein thermodynamics and the pipeline for engineering new therapeutics and nanotechnologies. Existing tools are either too expensive to compute or rely on manual design strategies. In this work, we developed a fast and accurate method for membrane protein design. The tool is available to the public and will accelerate the experimental design pipeline for membrane proteins.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lupeng Kong ◽  
Fusong Ju ◽  
Haicang Zhang ◽  
Shiwei Sun ◽  
Dongbo Bu

Abstract Background Accurate prediction of protein tertiary structures is highly desired as the knowledge of protein structures provides invaluable insights into protein functions. We have designed two approaches to protein structure prediction, including a template-based modeling approach (called ProALIGN) and an ab initio prediction approach (called ProFOLD). Briefly speaking, ProALIGN aligns a target protein with templates through exploiting the patterns of context-specific alignment motifs and then builds the final structure with reference to the homologous templates. In contrast, ProFOLD uses an end-to-end neural network to estimate inter-residue distances of target proteins and builds structures that satisfy these distance constraints. These two approaches emphasize different characteristics of target proteins: ProALIGN exploits structure information of homologous templates of target proteins while ProFOLD exploits the co-evolutionary information carried by homologous protein sequences. Recent progress has shown that the combination of template-based modeling and ab initio approaches is promising. Results In the study, we present FALCON2, a web server that integrates ProALIGN and ProFOLD to provide high-quality protein structure prediction service. For a target protein, FALCON2 executes ProALIGN and ProFOLD simultaneously to predict possible structures and selects the most likely one as the final prediction result. We evaluated FALCON2 on widely-used benchmarks, including 104 CASP13 (the 13th Critical Assessment of protein Structure Prediction) targets and 91 CASP14 targets. In-depth examination suggests that when high-quality templates are available, ProALIGN is superior to ProFOLD and in other cases, ProFOLD shows better performance. By integrating these two approaches with different emphasis, FALCON2 server outperforms the two individual approaches and also achieves state-of-the-art performance compared with existing approaches. Conclusions By integrating template-based modeling and ab initio approaches, FALCON2 provides an easy-to-use and high-quality protein structure prediction service for the community and we expect it to enable insights into a deep understanding of protein functions.


2018 ◽  
Vol 146 ◽  
pp. 58-72 ◽  
Author(s):  
Shuangbao Song ◽  
Shangce Gao ◽  
Xingqian Chen ◽  
Dongbao Jia ◽  
Xiaoxiao Qian ◽  
...  

Biotechnology ◽  
2019 ◽  
pp. 156-184
Author(s):  
Hirak Jyoti Chakraborty ◽  
Aditi Gangopadhyay ◽  
Sayak Ganguli ◽  
Abhijit Datta

The great disagreement between the number of known protein sequences and the number of experimentally determined protein structures indicate an enormous necessity of rapid and accurate protein structure prediction methods. Computational techniques such as comparative modeling, threading and ab initio modelling allow swift protein structure prediction with sufficient accuracy. The three phases of computational protein structure prediction comprise: the pre-modelling analysis phase, model construction and post-modelling refinement. Protein modelling is primarily comparative or ab initio. Comparative or template-based methods such as homology and threading-based modelling require structural templates for constructing the structure of a target sequence. The ab initio is a template-free modelling approach which proceeds by satisfying various physics-based and knowledge-based parameters. The chapter will elaborate on the three phases of modelling, the programs available for performing each, issues, possible solutions and future research areas.


Author(s):  
Hirak Jyoti Chakraborty ◽  
Aditi Gangopadhyay ◽  
Sayak Ganguli ◽  
Abhijit Datta

The great disagreement between the number of known protein sequences and the number of experimentally determined protein structures indicate an enormous necessity of rapid and accurate protein structure prediction methods. Computational techniques such as comparative modeling, threading and ab initio modelling allow swift protein structure prediction with sufficient accuracy. The three phases of computational protein structure prediction comprise: the pre-modelling analysis phase, model construction and post-modelling refinement. Protein modelling is primarily comparative or ab initio. Comparative or template-based methods such as homology and threading-based modelling require structural templates for constructing the structure of a target sequence. The ab initio is a template-free modelling approach which proceeds by satisfying various physics-based and knowledge-based parameters. The chapter will elaborate on the three phases of modelling, the programs available for performing each, issues, possible solutions and future research areas.


Sign in / Sign up

Export Citation Format

Share Document