residue contact
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 25)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 12 ◽  
Author(s):  
Rulan Wang ◽  
Zhuo Wang ◽  
Zhongyan Li ◽  
Tzong-Yi Lee

Lysine crotonylation (Kcr) is involved in plenty of activities in the human body. Various technologies have been developed for Kcr prediction. Sequence-based features are typically adopted in existing methods, in which only linearly neighboring amino acid composition was considered. However, modified Kcr sites are neighbored by not only the linear-neighboring amino acid but also those spatially surrounding residues around the target site. In this paper, we have used residue–residue contact as a new feature for Kcr prediction, in which features encoded with not only linearly surrounding residues but also those spatially nearby the target site. Then, the spatial-surrounding residue was used as a new scheme for feature encoding for the first time, named residue–residue composition (RRC) and residue–residue pair composition (RRPC), which were used in supervised learning classification for Kcr prediction. As the result suggests, RRC and RRPC have achieved the best performance of RRC at an accuracy of 0.77 and an area under curve (AUC) value of 0.78, RRPC at an accuracy of 0.74, and an AUC value of 0.80. In order to show that the spatial feature is of a competitively high significance as other sequence-based features, feature selection was carried on those sequence-based features together with feature RRPC. In addition, different ranges of the surrounding amino acid compositions’ radii were used for comparison of the performance. After result assessment, RRC and RRPC features have shown competitively outstanding performance as others or in some cases even around 0.20 higher in accuracy or 0.3 higher in AUC values compared with sequence-based features.


Author(s):  
Elham Soltanikazemi ◽  
Farhan Quadir ◽  
Raj Roy ◽  
Jianlin Cheng

Predicting the quaternary structure of protein complex is an important problem. Inter-chain residue-residue contact prediction can provide useful information to guide the ab initio reconstruction of quaternary structures. However, few methods have been developed to build quaternary structures from predicted inter-chain contacts. Here, we introduce a gradient descent optimization algorithm (GD) to build quaternary structures of protein dimers utilizing inter-chain contacts as distance restraints. We evaluate GD on several datasets of homodimers and heterodimers using true or predicted contacts. GD consistently performs better than a simulated annealing method and a Markov Chain Monte Carlo simulation method. Using true inter-chain contacts as input, GD can reconstruct high-quality structural models for homodimers and heterodimers with average TM-score ranging from 0.92 to 0.99 and average interface root mean square distance (I-RMSD) from 0.72 Å to 1.64 Å. On a dataset of 115 homodimers, using predicted inter-chain contacts as input, the average TM-score of the structural models built by GD is 0.76. For 46% of the homodimers, high-quality structural models with TM-score >= 0.9 are reconstructed from predicted contacts. There is a strong correlation between the quality of the reconstructed models and the precision and recall of predicted contacts. If the precision or recall of predicted contacts is >20%, GD can reconstruct good models for most homodimers, indicating only a moderate precision or recall of inter-chain contact prediction is needed to build good structural models for most homodimers. Moreover, the accuracy of reconstructed models positively correlates with the contact density in dimers.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 503
Author(s):  
Md. Selim Reza ◽  
Huiling Zhang ◽  
Md. Tofazzal Hossain ◽  
Langxi Jin ◽  
Shengzhong Feng ◽  
...  

Protein contact prediction helps reconstruct the tertiary structure that greatly determines a protein’s function; therefore, contact prediction from the sequence is an important problem. Recently there has been exciting progress on this problem, but many of the existing methods are still low quality of prediction accuracy. In this paper, we present a new mixed integer linear programming (MILP)-based consensus method: a Consensus scheme based On a Mixed integer linear opTimization method for prOtein contact Prediction (COMTOP). The MILP-based consensus method combines the strengths of seven selected protein contact prediction methods, including CCMpred, EVfold, DeepCov, NNcon, PconsC4, plmDCA, and PSICOV, by optimizing the number of correctly predicted contacts and achieving a better prediction accuracy. The proposed hybrid protein residue–residue contact prediction scheme was tested in four independent test sets. For 239 highly non-redundant proteins, the method showed a prediction accuracy of 59.68%, 70.79%, 78.86%, 89.04%, 94.51%, and 97.35% for top-5L, top-3L, top-2L, top-L, top-L/2, and top-L/5 contacts, respectively. When tested on the CASP13 and CASP14 test sets, the proposed method obtained accuracies of 75.91% and 77.49% for top-L/5 predictions, respectively. COMTOP was further tested on 57 non-redundant ɑ-helical transmembrane proteins and achieved prediction accuracies of 64.34% and 73.91% for top-L/2 and top-L/5 predictions, respectively. For all test datasets, the improvement of COMTOP in accuracy over the seven individual methods increased with the increasing number of predicted contacts. For example, COMTOP performed much better for large number of contact predictions (such as top-5L and top-3L) than for small number of contact predictions such as top-L/2 and top-L/5. The results and analysis demonstrate that COMTOP can significantly improve the performance of the individual methods; therefore, COMTOP is more robust against different types of test sets. COMTOP also showed better/comparable predictions when compared with the state-of-the-art predictors.


2021 ◽  
Author(s):  
Boqiao Lai ◽  
Jinbo Xu

Experimental protein function annotation does not scale with the fast-growing sequence databases. Only a tiny fraction (<0.1%) of protein sequences in UniProtKB has experimentally determined functional annotations. Computational methods may predict protein function in a high-throughput way, but its accuracy is not very satisfactory. Based upon recent breakthroughs in protein structure prediction and protein language models, we develop GAT-GO, a graph attention network (GAT) method that may substantially improve protein function prediction by leveraging predicted inter-residue contact graphs and protein sequence embedding. Our experimental results show that GAT-GO greatly outperforms the latest sequence- and structure-based deep learning methods. On the PDB-mmseqs testset where the train and test proteins share <15% sequence identity, GAT-GO yields Fmax(maximum F-score) 0.508, 0.416, 0.501, and AUPRC(area under the precision-recall curve) 0.427, 0.253, 0.411 for the MFO, BPO, CCO ontology domains, respectively, much better than homology-based method BLAST (Fmax 0.117,0.121,0.207 and AUPRC 0.120, 0.120, 0.163). On the PDB-cdhit testset where the training and test proteins share higher sequence identity, GAT-GO obtains Fmax 0.637, 0.501, 0.542 for the MFO, BPO, CCO ontology domains, respectively, and AUPRC 0.662, 0.384, 0.481, significantly exceeding the just-published graph convolution method DeepFRI, which has Fmax 0.542, 0.425, 0.424 and AUPRC 0.313, 0.159, 0.193.


2021 ◽  
Vol 17 (5) ◽  
pp. e1009027
Author(s):  
Huiling Zhang ◽  
Zhendong Bei ◽  
Wenhui Xi ◽  
Min Hao ◽  
Zhen Ju ◽  
...  

Sequence-based residue contact prediction plays a crucial role in protein structure reconstruction. In recent years, the combination of evolutionary coupling analysis (ECA) and deep learning (DL) techniques has made tremendous progress for residue contact prediction, thus a comprehensive assessment of current methods based on a large-scale benchmark data set is very needed. In this study, we evaluate 18 contact predictors on 610 non-redundant proteins and 32 CASP13 targets according to a wide range of perspectives. The results show that different methods have different application scenarios: (1) DL methods based on multi-categories of inputs and large training sets are the best choices for low-contact-density proteins such as the intrinsically disordered ones and proteins with shallow multi-sequence alignments (MSAs). (2) With at least 5L (L is sequence length) effective sequences in the MSA, all the methods show the best performance, and methods that rely only on MSA as input can reach comparable achievements as methods that adopt multi-source inputs. (3) For top L/5 and L/2 predictions, DL methods can predict more hydrophobic interactions while ECA methods predict more salt bridges and disulfide bonds. (4) ECA methods can detect more secondary structure interactions, while DL methods can accurately excavate more contact patterns and prune isolated false positives. In general, multi-input DL methods with large training sets dominate current approaches with the best overall performance. Despite the great success of current DL methods must be stated the fact that there is still much room left for further improvement: (1) With shallow MSAs, the performance will be greatly affected. (2) Current methods show lower precisions for inter-domain compared with intra-domain contact predictions, as well as very high imbalances in precisions for intra-domains. (3) Strong prediction similarities between DL methods indicating more feature types and diversified models need to be developed. (4) The runtime of most methods can be further optimized.


2021 ◽  
Author(s):  
David Gloriam ◽  
Albert Kooistra ◽  
Christian Munk ◽  
Alexander Hauser

Abstract We present an online, interactive platform for comparative analysis of all available G protein-coupled receptor structures while correlating to functional data. The comprehensive platform encompasses structure similarity, secondary structure, protein backbone packing and movement, residue-residue contact networks, amino acid properties and prospective design of experimental mutagenesis studies. This lets any researcher tap the potential of sophisticated structural analyses enabling a plethora of basic and applied research studies.


2021 ◽  
Author(s):  
Xiao Chen ◽  
Jian Liu ◽  
Zhiye Guo ◽  
Tianqi Wu ◽  
Jie Hou ◽  
...  

Abstract The inter-residue contact prediction and deep learning showed the promise to improve the estimation of protein model accuracy (CASP13) in the 13th Critical Assessment of Protein Structure Prediction (CASP13). During the 2020 CASP14 experiment, we developed and tested several EMA predictors that used deep learning with the new features based on inter-residue distance/contact predictions as well as the existing model quality features. The average global distance test (GDT-TS) score loss of ranking CASP14 structural models by three multi-model MULTICOM EMA predictors (MULTICOM-CONSTRUCT, MULTICOM-AI, and MULTICOM-CLUSTER) is 0.073, 0.079, and 0.081, respectively, which are ranked first, second, and third places out of 68 CASP14 EMA predictors. The single-model EMA predictor (MULTICOM-DEEP) is ranked 10th place among all the single-model EMA methods in terms of GDT-TS score loss. The results show that deep learning and contact/distance predictions are useful in ranking and selecting protein structural models.


2021 ◽  
Author(s):  
Xiao Chen ◽  
Jian Liu ◽  
Zhiye Guo ◽  
Tianqi Wu ◽  
Jie Hou ◽  
...  

AbstractThe inter-residue contact prediction and deep learning showed the promise to improve the estimation of protein model accuracy (EMA) in the 13th Critical Assessment of Protein Structure Prediction (CASP13). During the 2020 CASP14 experiment, we developed and tested several EMA predictors that used deep learning with the new features based on inter-residue distance/contact predictions as well as the existing model quality features. The average global distance test (GDT-TS) score loss of ranking CASP14 structural models by three multi-model MULTICOM EMA predictors (MULTICOM-CONSTRUCT, MULTICOM-AI, and MULTICOM-CLUSTER) is 0.073, 0.079, and 0.081, respectively, which are ranked first, second, and third places out of 68 CASP14 EMA predictors. The single-model EMA predictor (MULTICOM-DEEP) is ranked 10th place among all the single-model EMA methods in terms of GDT_TS score loss. The results show that deep learning and contact/distance predictions are useful in ranking and selecting protein structural models.


2021 ◽  
Vol 15 (8) ◽  
pp. 821-830
Author(s):  
He Huang ◽  
Xinqi Gong

Proteins are large molecules consisting of a linear sequence of amino acids. Protein performs biological functions with specific 3D structures. The main factors that drive proteins to form these structures are constraint between residues. These constraints usually lead to important inter-residue relationships, including short-range inter-residue contacts and long-range interresidue distances. Thus, a highly accurate prediction of inter-residue contact and distance information is of great significance for protein tertiary structure computations. Some methods have been proposed for inter-residue contact prediction, most of which focus on contact map prediction and some reviews have summarized the progresses. However, inter-residue distance prediction is found to provide better guidance for protein structure prediction than contact map prediction in recent years. The methods for inter-residue distance prediction can be roughly divided into two types according to the consideration of distance value: one is based on multi-classification with discrete value and the other is based on regression with continuous value. Here, we summarize these algorithms and show that they have obtained good results. Compared to contact map prediction, distance map prediction is in its infancy. There is a lot to do in the future including improving distance map prediction precision and incorporating them into residue-residue distanceguided ab initio protein folding.


Sign in / Sign up

Export Citation Format

Share Document