scholarly journals Combined multi-modal assessment of glaucomatous damage with electroretinography and optical coherence tomography/angiography

Author(s):  
Khaldoon O. Al-Nosairy ◽  
Gokulraj Prabhakaran ◽  
Konstantinos Pappelis ◽  
Hagen Thieme ◽  
Michael B. Hoffmann

AbstractPurposeTo compare the diagnostic performance and to evaluate the interrelationship of electroretinographical and structural and vascular measures in glaucoma.MethodsFor 14 eyes of 14 healthy controls and 15 eyes of 12 patients with glaucoma ranging from preperimetric to advanced stages OCT, OCT-A and electrophysiological measures [multifocal photopic negative response ratio (mfPhNR) and steady state pattern electroretinogram (ssPERG)] were applied to assess changes in retinal structure, microvasculature, and function, respectively. The diagnostic performance was assessed via area-under-curve (AUC) measures obtained from ROC analyses. The interrelation of the different measures was assessed with correlation analyses.ResultsmfPhNR and ssPERG amplitudes, parafoveal (pfVD) and peripapillary vessel density (pVD), macular ganglion cell inner plexiform layer thickness (mGCIPL) and peripapillary retinal nerve fibre layer thickness (pRNFL) were significantly reduced in glaucoma. The AUC for mfPhNR was highest among diagnostic modalities (AUC: 0.88, 95%-CI: 0.75-1.0, P< 0.001), albeit not statistically different from that for macular (mGCIPL: 0.76, 0.58-0.94, P< 0.05; pfVD: 0.81, .65-.97, P< 0.01) or peripapillary imaging (pRNFL: 0.85, 0.70-1.0, P< 0.01; pVD: 0.82, 0.68-0.97, P < 0.01). Combined functional/vascular measures yielded the highest AUC (mfPhNR-pfVD: 0.94, 0.85-1.0, P<0.001). The functional/structural measure correlation (mfPhNR-mGCIPL correlation coefficient (rs): 0.58, P = 0.001; mfPhNR-pRNFL rs: 0.66, P < 0.0001) was stronger than the functional-vascular correlation (mfPhNR-pfVD rs: 0.29, P = 0.13; mfPhNR-pVD rs: 0.54, P = 0.003).ConclusionsThe combination of ERG measures and OCT-A improved diagnostic performance in glaucoma. Combing ERG, structural and OCT-A parameters provides an enhanced understanding of the pathophysiology of glaucoma.

Ophthalmology ◽  
2014 ◽  
Vol 121 (4) ◽  
pp. 849-854 ◽  
Author(s):  
Jean-Claude Mwanza ◽  
Donald L. Budenz ◽  
David G. Godfrey ◽  
Arvind Neelakantan ◽  
Fouad E. Sayyad ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Amorim-de-Sousa ◽  
Tim Schilling ◽  
Paulo Fernandes ◽  
Yeshwanth Seshadri ◽  
Hamed Bahmani ◽  
...  

AbstractUpregulation of retinal dopaminergic activity may be a target treatment for myopia progression. This study aimed to explore the viability of inducing changes in retinal electrical activity with short-wavelength light targeting melanopsin-expressing retinal ganglion cells (ipRGCs) passing through the optic nerve head. Fifteen healthy non-myopic or myopic young adults were recruited and underwent stimulation with blue light using a virtual reality headset device. Amplitudes and implicit times from photopic 3.0 b-wave and pattern electroretinogram (PERG) were measured at baseline and 10 and 20 min after stimulation. Relative changes were compared between non-myopes and myopes. The ERG b-wave amplitude was significantly larger 20 min after blind-spot stimulation compared to baseline (p < 0.001) and 10 min (p < 0.001) post-stimulation. PERG amplitude P50-N95 also showed a significant main effect for ‘Time after stimulation’ (p < 0.050). Implicit times showed no differences following blind-spot stimulation. PERG and b-wave changes after blind-spot stimulation were stronger in myopes than non-myopes. It is possible to induce significant changes in retinal electrical activity by stimulating ipRGCs axons at the optic nerve head with blue light. The results suggest that the changes in retinal electrical activity are located at the inner plexiform layer and are likely to involve the dopaminergic system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ga-In Lee ◽  
Kyung-Ah Park ◽  
Sei Yeul Oh ◽  
Doo-Sik Kong ◽  
Sang Duk Hong

AbstractWe evaluated postoperative retinal thickness in pediatric and juvenile craniopharyngioma (CP) patients with chiasmal compression using optical coherence tomography (OCT) auto-segmentation. We included 18 eyes of 18 pediatric or juvenile patients with CP and 20 healthy controls. Each thickness of the macular retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, and photoreceptor layer was compared between the CP patients and healthy controls. There was significant thinning in the macular RNFL (estimates [μm], superior, − 10.68; inferior, − 7.24; nasal, − 14.22), all quadrants of GCL (superior, − 16.53; inferior, − 14.37; nasal, − 24.34; temporal, − 9.91) and IPL (superior, − 11.45; inferior, − 9.76; nasal, − 15.25; temporal, − 4.97) in pediatric and juvenile CP patients postoperatively compared to healthy control eyes after adjusting for age and refractive errors. Thickness reduction in the average and nasal quadrant of RNFL, GCL, and IPL was associated with peripapillary RNFL thickness, and reduced nasal quadrant GCL and IPL thicknesses were associated with postoperative visual field defects. In pediatric and juvenile patients with CP, decreased inner retinal layer thickness following chiasmal compression was observed. The changes in retinal structures were closely related to peripapillary RNFL thinning and functional outcomes.


Sign in / Sign up

Export Citation Format

Share Document