scholarly journals Isolation, identification and functional characterization of cultivable bacteria from Arabian Sea and Bay of Bengal water samples reveals high diversity

2020 ◽  
Author(s):  
Shriram N. Rajpathak ◽  
Yugandhara M. Patil ◽  
Roumik Banerjee ◽  
Asmita M. Khedkar ◽  
Pawan G. Mishra ◽  
...  

AbstractThe oxygen minimum zone of the Arabian Sea (AS) and Bay of Bengal (BOB) is rich in organic matter and is an unusual niche. Bacteria present in the oceanic water play an important role in ecology since they are responsible for decomposing, mineralizing of organic matter and in elemental cycling like nitrogen, sulfur, phosphate. This study focuses on culturing bacteria from oxygen minimum zones (OMZ) and non-OMZ regions and their phylogenetic as well as the functional characterization. Genotypic characterization of the isolates using amplified rDNA based 16SrRNA sequencing grouped them into various phylogenetic groups such as alpha-proteobacteria, gamma-proteobacteria and unaffiliated bacteria. The cultivable bacterial assemblages encountered belonged to the genus Halomonas, Marinobacter, Idiomarina, Pshyctobacter and Pseudoalteromonas. Among the enzymatic activities, carbohydrate utilization activity was most predominant (100%) and microorganisms possessed amylase, cellulase, xylanase and chitinase. A large proportion of these bacteria (60%) were observed to be hydrocarbon consuming and many were resistant to ampicillin, chloramphenicol, kanamycin and streptomycin. The high diversity and high percentage of extracellular hydrolytic enzyme activities along with hydrocarbon degradation activity of the culturable bacteria reflects their important ecological role in oceanic biogeochemical cycling. Further assessment confirmed the presence of nitrogen reduction capability in these cultivable bacteria which highlights their importance in oceanic geochemical cycling.

2020 ◽  
Vol 17 (23) ◽  
pp. 6051-6080
Author(s):  
Tim Rixen ◽  
Greg Cowie ◽  
Birgit Gaye ◽  
Joaquim Goes ◽  
Helga do Rosário Gomes ◽  
...  

Abstract. Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations < ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20 µM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of < ∼ 0.05 µM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21 % of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between > 0 and ∼ 0.05 µM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.


2006 ◽  
Vol 52 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Angelina T Lukwinski ◽  
Janet E Hill ◽  
George G Khachatourians ◽  
Sean M Hemmingsen ◽  
Dwayne D Hegedus

The crucifer root maggot, Delia radicum, is an important pest of cruciferous crops; however, little is known about its digestive biochemistry or resident gut microbiota. A culturing approach was used to survey the types of micro organisms associated with eggs, midgut, and faeces of larvae feeding on rutabaga. All bacteria isolated from the midgut and faecal materials were Gram-negative bacilli. Nine types of culturable bacteria were identified within the midgut based on analysis of 60 kDa chaperonin sequences and were generally γ-Proteobacteria, primarily Enterobacteriaceae. Carbohydrate utilization patterns, select biochemical pathways, and hydrolytic enzymes were examined using the API®system for each of the nine groups, revealing an exceptionally broad metabolic and hydrolytic potential. These studies suggest that resident alimentary tract microorganisms have the potential to contribute to host nutrition directly as a food source as well as by providing increased digestive potential.Key words: Delia radicum, crucifer root maggot, midgut-associated bacteria.


2015 ◽  
Vol 168 ◽  
pp. 1-8 ◽  
Author(s):  
Peter Kraal ◽  
Benjamin C. Bostick ◽  
Thilo Behrends ◽  
Gert-Jan Reichart ◽  
Caroline P. Slomp

2019 ◽  
Author(s):  
Jovitha Lincy ◽  
Cathrine Manohar

Abstract. The Northern Indian Ocean host two recognized Oxygen Minimum Zones (OMZ): one in the Arabian Sea and the other in the Bay of Bengal region. The next-generation sequencing technique was used to understand the total bacterial diversity from the surface sediment of off Goa within the OMZ of Arabian Sea, and from off Paradip within the OMZ of Bay of Bengal. The dominant phyla identified include Firmicutes (33.06 %) and Proteobacteria (32.44 %) from the Arabian Sea, and Proteobacteria (52.51 %) and Planctomycetes (8.63 %) from the Bay of Bengal. Statistical analysis indicates that bacterial diversity from sediments of the Bay of Bengal OMZ is ~ 48 % higher than the Arabian Sea OMZ. Diverse candidate bacterial clades were also detected, whose function is unknown, but many of these were reported from other OMZs as well, suggesting their putative role in sediment biogeochemistry. Bacterial diversity from the present study reveals that the off Paradip site of Bay of Bengal OMZ is highly diverse and unexplored in comparison to the off Goa site of the Arabian Sea OMZ. Functional diversity analysis indicates that the relative percentage distribution of genes involved in methane, nitrogen, sulfur and many unclassified energy metabolisms is almost the same in both sites, reflecting a similar ecological role, irrespective of the differences in phylotypic diversity.


2013 ◽  
Vol 10 (6) ◽  
pp. 10399-10428 ◽  
Author(s):  
L. Pozzato ◽  
D. Van Oevelen ◽  
L. Moodley ◽  
K. Soetaert ◽  
J. J. Middelburg

Abstract. The bacterial loop, the consumption of dissolved organic matter (DOM) by bacteria and subsequent transfer of bacterial carbon to higher trophic levels, plays a prominent role in pelagic aquatic food webs. However, its role in sedimentary ecosystems is not well documented. Here we present the results of isotope tracer experiments performed under in situ oxygen conditions in sediments from inside and outside the Arabian Sea Oxygen Minimum Zone (OMZ) to study the importance of the microbial loop in this setting. Particulate organic matter, added as phytodetritus, was processed by bacteria, protozoa and metazoans, while dissolved organic matter was processed only by bacteria and there was very little, if any, transfer to higher trophic levels within the experimental period. This lack of significant transfer of bacterial-derived carbon to metazoan consumers indicates that the bacterial loop is rather inefficient in these sediments. Moreover, metazoans directly consume labile particulate organic matter resources and thus compete with bacteria for phytodetritus.


Sign in / Sign up

Export Citation Format

Share Document