phosphorus species
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 52)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Ting Wang ◽  
Zhao Jiang ◽  
Qi Tang ◽  
Bolin Wang ◽  
Saisai Wang ◽  
...  

AbstractVinyl chloride, the monomer of polyvinyl chloride (PVC), is industrially synthesized via acetylene hydrochlorination. Thereby, easy to sublimate but toxic mercury chloride catalysts are widely used. It is imperative to find environmentally friendly non-mercury catalysts to promote the green production of PVC. Low-cost copper-based catalysts are promising candidates. In this study, phosphorus-doped Cu-based catalysts are prepared. It is shown that the type of phosphorus configuration and the distribution on the surface of the carrier can be adjusted by changing the calcination temperature. Among the different phosphorus species, the formed P-C bond plays a key role. The coordination structure formed by the interaction between P-C bonds and atomically dispersed Cu2+ species results in effective and stable active sites. Insights on how P-C bonds activate the substrate may provide ideas for the design and optimization of phosphorus-doped catalysts for acetylene hydrochlorination.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255411
Author(s):  
Erin Fleming Jones ◽  
Rebecca J. Frei ◽  
Raymond M. Lee ◽  
Jordan D. Maxwell ◽  
Rhetta Shoemaker ◽  
...  

Human modification of water and nutrient flows has resulted in widespread degradation of aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions of USD in economic damages annually. Semiarid regions have been disproportionately affected because of high relative water demand and pollution. Many proven water management strategies are not fully implemented, partially because of a lack of public engagement with freshwater ecosystems. In this context, we organized a large citizen science initiative to quantify nutrient status and cultivate connection in the semiarid watershed of Utah Lake (USA). Working with community members, we collected samples from ~200 locations throughout the 7,640 km2 watershed on a single day in the spring, summer, and fall of 2018. We calculated ecohydrological metrics for nutrients, major ions, and carbon. For most solutes, concentration and leverage (influence on flux) were highest in lowland reaches draining directly to the lake, coincident with urban and agricultural sources. Solute sources were relatively persistent through time for most parameters despite substantial hydrological variation. Carbon, nitrogen, and phosphorus species showed critical source area behavior, with 10–17% of the sites accounting for most of the flux. Unlike temperate watersheds, where spatial variability often decreases with watershed size, longitudinal variability showed an hourglass shape: high variability among headwaters, low variability in mid-order reaches, and high variability in tailwaters. This unexpected pattern was attributable to the distribution of human activity and hydrological complexity associated with return flows, losing river reaches, and diversions in the tailwaters. We conclude that participatory science has great potential to reveal ecohydrological patterns and rehabilitate individual and community relationships with local ecosystems. In this way, such projects represent an opportunity to both understand and improve water quality in diverse socioecological contexts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Gao ◽  
Guanfeng Liang ◽  
Tong Ru ◽  
Xiaoyan Liu ◽  
Haifeng Qi ◽  
...  

AbstractSingle-atom Rh catalysts present superior activity relative to homogeneous catalyst in olefins hydroformylation, yet with limited success in regioselectivity control. In the present work, we develop a phosphorus coordinated Rh1 single-atom catalyst with nanodiamond as support. Benefiting from this unique structure, the catalyst exhibits excellent activity and regioselectivity in hydroformylation of arylethylenes with wide substrate generality, i.e., with high conversion (>99%) and high regioselectivity (>90%), which is comparable with the homogeneous counterparts. The coordination interaction between Rh1 and surface phosphorus species is clarified by 31P solid-state NMR and X-ray absorption spectroscopy (XAS). Rh single atoms are firmly anchored over nanodiamond through Rh-P bonds, guaranteeing good stability in the hydroformation of styrene even after six runs. Finally, by using this catalyst, two kinds of pharmaceutical molecules, Ibuprofen and Fendiline, are synthesized efficiently with high yields, demonstrating a new prospect of single-atom catalyst in pharmaceutical synthesis.


2021 ◽  
Vol 72 (3) ◽  
pp. 33-44
Author(s):  
Haifeng Tian ◽  
Yongyong Nan ◽  
Jinlong Lv ◽  
Fei Zha ◽  
Xiaohua Tang ◽  
...  

Directly incorporated phosphorus species into the framework of HZSM-5 zeolite (H[P, Al]-ZSM-5) was successfully synthesized by the facile hydrothermal method. It was characterized by employing XRD, ICP-OES, SEM, FT-IR, N2 adsorption-desorption, NH3-TPD, XPS and TG-DTA, respectively. The effects of the phosphorus species content, temperature, WHSV, and the molar ratio of methanol/1-butene in coupling transformation of methanol with 1-butene to propylene catalyzed by H[P, Al]-ZSM-5 in a fixed bed reactor were studied systematically. Tests have suggested the acid content and specific surface area of H[P, Al]-ZSM-5 are reduced. Under the condition of reaction temperature at 550�Z, molar ratio of methanol/1-butene to 1.0, reaction pressure at 0.1 MPa and WHSV= 3.53 h-1, the P-modified HZSM-5 zeolite (with the P2O5 molar composition of 0.4 )the selectivity and yield of propylene are 35.6% and 32.5%, respectively.


2021 ◽  
Author(s):  
Ting Wang ◽  
Zhao Jiang ◽  
Qi Tang ◽  
Bolin Wang ◽  
Saisai Wang ◽  
...  

Abstract As an environmentally friendly non-mercury catalyst for the hydrochlorination of acetylene, Cu-based catalysts have always attracted attention. In this study, a series of phosphorus-doped Cu-based catalysts supported on activated carbon were prepared by the wet impregnation method, the difference of them is that the calcination temperature of phosphorus-doped carrier is 200 ℃, 400 ℃, 600 ℃ and 800 ℃ respectively. In the test conditions of T = 150℃, GHSV(C2H2) = 90 h− 1 and V(HCl): V(C2H2) = 1.2, the highest acetylene conversion was 83.1%. The type of phosphorus configuration and the distribution on the surface of the carrier can be adjusted by changing the calcination temperature. Among the different phosphorus species formed by the phosphorus doping treatment at different temperatures, the P-C bond formed after the phosphorus element is incorporated into the carbon lattice also accounts for an increasing proportion with the increase of the calcination temperature,which is accompanied by a higher and higher acetylene conversion. It can be seen that the P-C bond plays a key role in the acetylene hydrochlorination reaction in this system. Meanwhile, Cu2+ was identified as the main active component in the catalyst by XPS. The representative HAADF-STEM image shows isolated copper species, confirming that the single-center copper species supported on the carbon support is the active center of the acetylene hydrochlorination reaction. The coordination structure formed by the interaction between the P-C bond and the atomically dispersed Cu2+ species is an effective and stable active site in the reaction. Density functional theory calculations indicate that the reaction is proposed to proceed according to the Langmuir-Hinshelwood (L-H) mechanism. This work is the first to identify which phosphorus species plays a role in the hydrochlorination of acetylene, which may provide some ideas for the design and optimization of phosphorus doping catalysts in the future.


2021 ◽  
Vol 9 (6) ◽  
pp. 626
Author(s):  
Michael S. Owens ◽  
Stephen P. Kelly ◽  
Thomas A. Frankovich ◽  
David T. Rudnick ◽  
James W. Fourqurean ◽  
...  

We estimated the net exchange of nitrogen and phosphorus species using core incubations under light and dark conditions in estuarine lakes that are the aquatic interface between the freshwater Everglades and marine Florida Bay. These lakes and adjacent shallow water Florida Bay environments are sites where the restoration of hydrological flows will likely have the largest impact on salinity. Sediment respiration, measured by oxygen uptake, averaged (±S.D.) −2400 ± 1300, −300 ± 1000, and 1900 ± 1400 μmol m−2 h−1 for dark incubations, light incubations, and gross photosynthesis estimates, respectively, with dark incubations consistent with oxygen uptake measured by microelectrode profiles. Although most fluxes of soluble reactive phosphorus, nitrate, and N2–N were low under both light and dark incubation conditions, we observed a number of very high efflux events of NH4+ during dark incubations. A significant decrease in NH4+flux was observed in the light. The largest differences between light and dark effluxes of NH4+ occurred in lakes during periods of low coverage of the aquatic macrophyte Chara hornemannii Wallman, with NH4+ effluxes > 200 μmol m−2 h−1. Increasing freshwater flow from the Everglades is expected to expand lower salinity environments suitable for Chara, and therefore, diminish the sediment NH4+ effluxes that may fuel algal blooms.


2021 ◽  
Vol 14 ◽  
pp. 100684
Author(s):  
Luana Bottezini ◽  
Deborah Pinheiro Dick ◽  
Alberto Wisniewski ◽  
Heike Knicker ◽  
Ingred Suellen Carvalho Carregosa

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2973
Author(s):  
Rezeda A. Ishkaeva ◽  
Ilyas S. Nizamov ◽  
Dmitriy S. Blokhin ◽  
Elizaveta A. Urakova ◽  
Vladimir V. Klochkov ◽  
...  

Phosphorus species are potent modulators of physicochemical and bioactive properties of peptide compounds. O,O-diorganyl dithiophoshoric acids (DTP) form bioactive salts with nitrogen-containing biomolecules; however, their potential as a peptide modifier is poorly known. We synthesized amphiphilic ammonium salts of O,O-dimenthyl DTP with glutathione, a vital tripeptide with antioxidant, protective and regulatory functions. DTP moiety imparted radical scavenging activity to oxidized glutathione (GSSG), modulated the activity of reduced glutathione (GSH) and profoundly improved adsorption and electrooxidation of both glutathione salts on graphene oxide modified electrode. According to NMR spectroscopy and GC–MS, the dithiophosphates persisted against immediate dissociation in an aqueous solution accompanied by hydrolysis of DTP moiety into phosphoric acid, menthol and hydrogen sulfide as well as in situ thiol-disulfide conversions in peptide moieties due to the oxidation of GSH and reduction of GSSG. The thiol content available in dissolved GSH dithiophosphate was more stable during air oxidation compared with free GSH. GSH and the dithiophosphates, unlike DTP, caused a thiol-dependent reduction of MTS tetrazolium salt. The results for the first time suggest O,O-dimenthyl DTP as a redox modifier for glutathione, which releases hydrogen sulfide and induces biorelevant redox conversions of thiol/disulfide groups.


Sign in / Sign up

Export Citation Format

Share Document