scholarly journals Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean

2020 ◽  
Vol 17 (23) ◽  
pp. 6051-6080
Author(s):  
Tim Rixen ◽  
Greg Cowie ◽  
Birgit Gaye ◽  
Joaquim Goes ◽  
Helga do Rosário Gomes ◽  
...  

Abstract. Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations < ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20 µM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of < ∼ 0.05 µM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21 % of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between > 0 and ∼ 0.05 µM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.

2020 ◽  
Author(s):  
Tim Rixen ◽  
Greg Cowie ◽  
Birgit Gaye ◽  
Joaquim Goes ◽  
Helga do Rosário Gomes ◽  
...  

Abstract. Decreasing concentrations of dissolved oxygen and the resulting expansion of anaerobic ecosystems is a major threat to marine ecosystem services because it favors the formation of greenhouse gases such as methane, endangers the growth of economically important species, and increases the loss nitrate. Nitrate is one of the potential primary nutrients, which availability controls the marine productivity. The Arabian Sea and the Bay of Bengal are home to ~ 59 % of the Earth's marine sediments exposed to severe oxygen depletion and approximately 21 % of the total volume of oxygen-depleted waters (oxygen minimum zones, OMZs). The balance between physical oxygen supply and the biological oxygen consumption controlled the oxygen concentrations. In the Arabian Sea and most likely also in the Bay of Bengal the supply of oxygen sustained by mixing and advection associated with mesoscale eddies compensated the biological oxygen consumption. These steady states maintain low (hypoxic) oxygen concentrations allowing the competition between anaerobic and aerobic processes. However, due to slightly higher oxygen concentrations, the aerobic nitrite oxidization inhibits the anaerobic nitrite reduction and thus denitrification (the reduction of nitrate to N2) to become significant in the Bay of Bengal. A feedback mechanism caused by the negative influence of decreasing oxygen concentrations on the biological oxygen demand helped to maintain these steady states. Furthermore, it might have also counteracted a reduced physical oxygen supply into the Arabian Sea caused by climate-driven changes in the ocean's circulation during the last 6000 years. However, due to human-induced global changes, the OMZs in Arabian Sea and the Bay of Bengal intensified and expanded, which included also the occurrence of anoxic events on the Indian shelf. This affects benthic ecosystems, and in the Arabian Sea it seems to have initiated a regime shift within the pelagic ecosystem structure. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.


2019 ◽  
Author(s):  
Jovitha Lincy ◽  
Cathrine Manohar

Abstract. The Northern Indian Ocean host two recognized Oxygen Minimum Zones (OMZ): one in the Arabian Sea and the other in the Bay of Bengal region. The next-generation sequencing technique was used to understand the total bacterial diversity from the surface sediment of off Goa within the OMZ of Arabian Sea, and from off Paradip within the OMZ of Bay of Bengal. The dominant phyla identified include Firmicutes (33.06 %) and Proteobacteria (32.44 %) from the Arabian Sea, and Proteobacteria (52.51 %) and Planctomycetes (8.63 %) from the Bay of Bengal. Statistical analysis indicates that bacterial diversity from sediments of the Bay of Bengal OMZ is ~ 48 % higher than the Arabian Sea OMZ. Diverse candidate bacterial clades were also detected, whose function is unknown, but many of these were reported from other OMZs as well, suggesting their putative role in sediment biogeochemistry. Bacterial diversity from the present study reveals that the off Paradip site of Bay of Bengal OMZ is highly diverse and unexplored in comparison to the off Goa site of the Arabian Sea OMZ. Functional diversity analysis indicates that the relative percentage distribution of genes involved in methane, nitrogen, sulfur and many unclassified energy metabolisms is almost the same in both sites, reflecting a similar ecological role, irrespective of the differences in phylotypic diversity.


2007 ◽  
Vol 20 (13) ◽  
pp. 2978-2993 ◽  
Author(s):  
Tommy G. Jensen

Abstract Composites of Florida State University winds (1970–99) for four different climate scenarios are used to force an Indian Ocean model. In addition to the mean climatology, the cases include La Niña, El Niño, and the Indian Ocean dipole (IOD). The differences in upper-ocean water mass exchanges between the Arabian Sea and the Bay of Bengal are investigated and show that, during El Niño and IOD years, the average clockwise Indian Ocean circulation is intensified, while it is weakened during La Niña years. As a consequence, high-salinity water export from the Arabian Sea into the Bay of Bengal is enhanced during El Niño and IOD years, while transport of low-salinity waters from the Bay of Bengal into the Arabian Sea is enhanced during La Niña years. This provides a venue for interannual salinity variations in the northern Indian Ocean.


2014 ◽  
Vol 11 (20) ◽  
pp. 5733-5747 ◽  
Author(s):  
T. Rixen ◽  
A. Baum ◽  
B. Gaye ◽  
B. Nagel

Abstract. The Arabian Sea plays an important role in the marine nitrogen cycle because of its pronounced mid-water oxygen minimum zone (OMZ) in which bio-available nitrate (NO3−) is reduced to dinitrogen gas (N2). As the nitrogen cycle can respond fast to climate-induced changes in productivity and circulation, the Arabian Sea sediments are an important palaeoclimatic archive. In order to understand seasonal and interannual variations in the nitrogen cycle, nutrient data were obtained from the literature published prior to 1993, evaluated, and compared with data measured during five expeditions carried out in the framework of the Joint Global Ocean Flux Study (JGOFS) in the Arabian Sea in 1995 and during a research cruise of RV Meteor in 2007. The data comparison showed that the area characterized by a pronounced secondary nitrite maximum (SNM) was by 63% larger in 1995 than a similarly determined estimate based on pre-JGOFS data. This area, referred to as the core of the denitrifying zone, showed strong seasonal and interannual variations driven by the monsoon. During the SW monsoon, the SNM retreated eastward due to the inflow of oxygen-enriched Indian Ocean Central Water (ICW). During the NE monsoon, the SNM expanded westward because of the reversal of the current regime. On an interannual timescale, a weaker SW monsoon decreased the inflow of ICW from the equatorial Indian Ocean and increased the accumulation of denitrification tracers by extending the residence time of water in the SNM. This is supported by palaeoclimatic studies showing an enhanced preservation of accumulative denitrification tracers in marine sediments in conjunction with a weakening of the SW monsoon during the late Holocene.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1924 ◽  
Author(s):  
Claudia Lüke ◽  
Daan R. Speth ◽  
Martine A.R. Kox ◽  
Laura Villanueva ◽  
Mike S.M. Jetten

Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community ofThaumarchaeotain the upper zone of the OMZ, whereas a low diversity ofScalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed byNitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance asNitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergentnrfAgene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 483-488 ◽  
Author(s):  
Koushik Dutta ◽  
Ravi Bhushan ◽  
B L K Somayajulu

Apparent marine radiocarbon ages are reported for the northern Indian Ocean region for the pre-nuclear period, based on measurements made in seven mollusk shells collected between 1930 and 1954. The conventional 14C ages of these shells range from 693 ± 44 to 434 ± 51 BP in the Arabian Sea and 511 ± 34 to 408 ± 51 BP in the Bay of Bengal. These ages correspond to mean ΔR correction values of 163 ± 30 yr for the northern Arabian Sea, 11 ± 35 yr for the eastern Bay of Bengal (Andaman Sea) and 32 ± 20 yr for the southern Bay of Bengal. Contrasting reservoir ages for these two basins are most likely due to differences in their thermocline ventilation rates.


2019 ◽  
Vol 16 (2) ◽  
pp. 505-519 ◽  
Author(s):  
Moturi S. Krishna ◽  
Rongali Viswanadham ◽  
Mamidala H. K. Prasad ◽  
Vuravakonda R. Kumari ◽  
Vedula V. S. S. Sarma

Abstract. Rivers are an important source of dissolved inorganic carbon (DIC) to the adjacent coastal waters. In order to examine the spatial variability in the distribution and major sources of DIC in the Indian monsoonal rivers and to quantify their export flux to the northern Indian Ocean, 27 major and medium-sized rivers were sampled during the discharge period. Significant spatial variability in concentrations of DIC (3.4–73.6 mg L−1) was observed, and it is attributed to spatial variations in the precipitation pattern, the size of rivers, pollution and lithology of the catchments. The stable isotopic composition of DIC (δ13CDIC) also showed strong spatial variability (−13.0 ‰ to −1.4 ‰) in the Indian monsoonal rivers with relatively depleted δ13CDIC values in rivers of the northwest of India (-11.1±2.3 ‰) and enriched values in the southeast of India (-3.5±2.3 ‰). Results of the linear least-squares regression models of Keeling and Miller–Tan's plots indicated that the chemical weathering of carbonate and silicate minerals by soil CO2 is the major source of DIC in the Indian monsoonal rivers. Spatial variability in the deviation of δ13CDIC from the approximated δ13C of the source may probably be due to dominant autotrophic production in rivers of the southeastern region, whereas heterotrophic decomposition of organic matter largely influences the other Indian monsoonal rivers. It is estimated that the Indian monsoonal rivers annually export ∼10.3 Tg of DIC to the northern Indian Ocean, of which the major fraction (75 %) enters into the Bay of Bengal, and the remaining fraction reaches to the Arabian Sea. This is consistent with the freshwater flux, which is 3 times higher for the Bay of Bengal (∼378 km3 yr−1) than for the Arabian Sea (122 km3 yr−1). Despite discharge from the Indian monsoonal rivers accounting for only 1.3 % of the global freshwater discharge, they disproportionately export 2.5 % of the total DIC exported by the world's major rivers. Despite rivers from the region in the southwest (SW) of India exporting DIC that is an order of magnitude lower (0.3 Tg yr−1) than the rivers from other regions of India, the highest yield of DIC was found in the rivers of the SW region of India. It is attributed to intense precipitation (∼3000 mm), favorable natural vegetation of tropical moist deciduous and tropical wet evergreen and semi-evergreen forests, tropical wet climate, high soil organic carbon, and the dominance of red loamy soils in catchments of the rivers of the SW region.


Zootaxa ◽  
2020 ◽  
Vol 4890 (1) ◽  
pp. 135-147
Author(s):  
K.V. AKHILESH ◽  
T.G. KISHORE ◽  
M. MUKTHA ◽  
M.W. LISHER ◽  
GOP P. AMBARISH ◽  
...  

Pseudanthias vizagensis Krishna, Rao and Venu, 2017 was described from 44 specimens, collected from Visakhapatnam (Andhra Pradesh), on the Bay of Bengal coast of India, but without clear designation of a holotype. The characters used for differentiating the species from its nearest congener Pseudanthias pillai Heemstra & Akhilesh, 2012, a species currently known only from the northern Indian Ocean, were limited, poor and substantially overlapping. Examination of additional material of P. pillai from the Arabian Sea, Bay of Bengal, Andaman Sea, and comparison with the original description and images of P. vizagensis revealed that the latter is a junior synonym of P. pillai. Diagnostic characters are reviewed, additional morphological details and fresh colouration, including sexual dimorphic characters not covered in previous works are provided. 


Sign in / Sign up

Export Citation Format

Share Document