scholarly journals glmGamPoi: Fitting Gamma-Poisson Generalized Linear Models on Single Cell Count Data

Author(s):  
Constantin Ahlmann-Eltze ◽  
Wolfgang Huber

AbstractMotivationThe Gamma-Poisson distribution is a theoretically and empirically motivated model for the sampling variability of single cell RNA-sequencing counts (Grün et al., 2014; Townes et al., 2019; Svensson, 2020; Silverman et al., 2018; Hafemeister and Satija, 2019) and an essential building block for analysis approaches including differential expression analysis (Robinson et al., 2010; McCarthy et al., 2012; Anders and Huber, 2010; Love et al., 2014), principal component analysis (Townes et al., 2019) and factor analysis (Risso et al., 2018). Existing implementations for inferring its parameters from data often struggle with the size of single cell datasets, which typically comprise thousands or millions of cells; at the same time, they do not take full advantage of the fact that zero and other small numbers are frequent in the data. These limitations have hampered uptake of the model, leaving room for statistically inferior approaches such as logarithm(-like) transformation.ResultsWe present a new R package for fitting the Gamma-Poisson distribution to data with the characteristics of modern single cell datasets more quickly and more accurately than existing methods. The software can work with data on disk without having to load them into RAM simultaneously.AvailabilityThe package glmGamPoi is available from Bioconductor (since release 3.11) for Windows, macOS, and Linux, and source code is available on GitHub under a GPL-3 license. The scripts to reproduce the results of this paper are available on GitHub as [email protected]

Author(s):  
Constantin Ahlmann-Eltze ◽  
Wolfgang Huber

Abstract Motivation The Gamma-Poisson distribution is a theoretically and empirically motivated model for the sampling variability of single cell RNA-sequencing counts (Grün et al., 2014; Svensson, 2020; Silverman et al., 2018; Hafemeister and Satija, 2019) and an essential building block for analysis approaches including differential expression analysis (Robinson et al., 2010; McCarthy et al., 2012; Anders and Huber, 2010; Love et al., 2014), principal component analysis (Townes et al., 2019) and factor analysis (Risso et al., 2018). Existing implementations for inferring its parameters from data often struggle with the size of single cell datasets, which can comprise millions of cells; at the same time, they do not take full advantage of the fact that zero and other small numbers are frequent in the data. These limitations have hampered uptake of the model, leaving room for statistically inferior approaches such as logarithm(-like) transformation. Results We present a new R package for fitting the Gamma-Poisson distribution to data with the characteristics of modern single cell datasets more quickly and more accurately than existing methods. The software can work with data on disk without having to load them into RAM simultaneously. Availability The package glmGamPoi is available from Bioconductor for Windows, macOS, and Linux, and source code is available on github.com/const-ae/glmGamPoi under a GPL-3 license.


2021 ◽  
Vol 2 (1) ◽  
pp. 43-61
Author(s):  
Aanchal Malhotra ◽  
Samarendra Das ◽  
Shesh N. Rai

Single-cell RNA-sequencing (scRNA-seq) technology provides an excellent platform for measuring the expression profiles of genes in heterogeneous cell populations. Multiple tools for the analysis of scRNA-seq data have been developed over the years. The tools require complicated commands and steps to analyze the underlying data, which are not easy to follow by genome researchers and experimental biologists. Therefore, we describe a step-by-step workflow for processing and analyzing the scRNA-seq unique molecular identifier (UMI) data from Human Lung Adenocarcinoma cell lines. We demonstrate the basic analyses including quality check, mapping and quantification of transcript abundance through suitable real data example to obtain UMI count data. Further, we performed basic statistical analyses, such as zero-inflation, differential expression and clustering analyses on the obtained count data. We studied the effects of excess zero-inflation present in scRNA-seq data on the downstream analyses. Our findings indicate that the zero-inflation associated with UMI data had no or minimal role in clustering, while it had significant effect on identifying differentially expressed genes. We also provide an insight into the comparative analysis for differential expression analysis tools based on zero-inflated negative binomial and negative binomial models on scRNA-seq data. The sensitivity analysis enhanced our findings in that the negative binomial model-based tool did not provide an accurate and efficient way to analyze the scRNA-seq data. This study provides a set of guidelines for the users to handle and analyze real scRNA-seq data more easily.


2019 ◽  
Author(s):  
Andrea Tangherloni ◽  
Federico Ricciuti ◽  
Daniela Besozzi ◽  
Pietro Liò ◽  
Ana Cvejic

Autoencoders (AEs) have been effectively used to capture the non-linearities among gene interactions of single-cell RNA sequencing (scRNA-Seq) data. However, their integration with the common scRNA-Seq bioinformatics pipelines still poses a challenge. Here, we introduce scAEspy, a unifying tool that embodies five of the most advanced AEs and different loss functions, including two novel AEs that we developed. scAEspy allows the integration of data generated using different scRNA-Seq platforms. We benchmarked scAEspy against principal component analysis (PCA) on five public datasets, showing that our new AEs outperform the existing solutions, achieving more than 20% increase of the Rand Index in the identification of cell clusters.


2017 ◽  
Vol 45 (19) ◽  
pp. 10978-10988 ◽  
Author(s):  
Cheng Jia ◽  
Yu Hu ◽  
Derek Kelly ◽  
Junhyong Kim ◽  
Mingyao Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document