scholarly journals Analysis of Single-Cell RNA-Sequencing Data: A Step-by-Step Guide

2021 ◽  
Vol 2 (1) ◽  
pp. 43-61
Author(s):  
Aanchal Malhotra ◽  
Samarendra Das ◽  
Shesh N. Rai

Single-cell RNA-sequencing (scRNA-seq) technology provides an excellent platform for measuring the expression profiles of genes in heterogeneous cell populations. Multiple tools for the analysis of scRNA-seq data have been developed over the years. The tools require complicated commands and steps to analyze the underlying data, which are not easy to follow by genome researchers and experimental biologists. Therefore, we describe a step-by-step workflow for processing and analyzing the scRNA-seq unique molecular identifier (UMI) data from Human Lung Adenocarcinoma cell lines. We demonstrate the basic analyses including quality check, mapping and quantification of transcript abundance through suitable real data example to obtain UMI count data. Further, we performed basic statistical analyses, such as zero-inflation, differential expression and clustering analyses on the obtained count data. We studied the effects of excess zero-inflation present in scRNA-seq data on the downstream analyses. Our findings indicate that the zero-inflation associated with UMI data had no or minimal role in clustering, while it had significant effect on identifying differentially expressed genes. We also provide an insight into the comparative analysis for differential expression analysis tools based on zero-inflated negative binomial and negative binomial models on scRNA-seq data. The sensitivity analysis enhanced our findings in that the negative binomial model-based tool did not provide an accurate and efficient way to analyze the scRNA-seq data. This study provides a set of guidelines for the users to handle and analyze real scRNA-seq data more easily.

2021 ◽  
Author(s):  
Gerard A. Bouland ◽  
Ahmed Mahfouz ◽  
Marcel J.T. Reinders

AbstractSingle-cell RNA sequencing data is characterized by a large number of zero counts, yet there is growing evidence that these zeros reflect biological rather than technical artifacts. We propose differential dropout analysis (DDA), as an alternative to differential expression analysis (DEA), to identify the effects of biological variation in single-cell RNA sequencing data. Using 16 publicly available datasets, we show that dropout patterns are biological in nature and can assess the relative abundance of transcripts more robustly than counts.


GigaScience ◽  
2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Francesca Pia Caruso ◽  
Luciano Garofano ◽  
Fulvio D'Angelo ◽  
Kai Yu ◽  
Fuchou Tang ◽  
...  

ABSTRACT Background Single-cell RNA sequencing is the reference technique for characterizing the heterogeneity of the tumor microenvironment. The composition of the various cell types making up the microenvironment can significantly affect the way in which the immune system activates cancer rejection mechanisms. Understanding the cross-talk signals between immune cells and cancer cells is of fundamental importance for the identification of immuno-oncology therapeutic targets. Results We present a novel method, single-cell Tumor–Host Interaction tool (scTHI), to identify significantly activated ligand–receptor interactions across clusters of cells from single-cell RNA sequencing data. We apply our approach to uncover the ligand–receptor interactions in glioma using 6 publicly available human glioma datasets encompassing 57,060 gene expression profiles from 71 patients. By leveraging this large-scale collection we show that unexpected cross-talk partners are highly conserved across different datasets in the majority of the tumor samples. This suggests that shared cross-talk mechanisms exist in glioma. Conclusions Our results provide a complete map of the active tumor–host interaction pairs in glioma that can be therapeutically exploited to reduce the immunosuppressive action of the microenvironment in brain tumor.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenan Chen ◽  
Yan Li ◽  
John Easton ◽  
David Finkelstein ◽  
Gang Wu ◽  
...  

2020 ◽  
Author(s):  
Hunyong Cho ◽  
Chuwen Liu ◽  
John S. Preisser ◽  
Di Wu

SummaryMeasuring gene-gene dependence in single cell RNA sequencing (scRNA-seq) count data is often of interest and remains challenging, because an unidentified portion of the zero counts represent non-detected RNA due to technical reasons. Conventional statistical methods that fail to account for technical zeros incorrectly measure the dependence among genes. To address this problem, we propose a bivariate zero-inflated negative binomial (BZINB) model constructed using a bivariate Poisson-gamma mixture with dropout indicators for the technical (excess) zeros. Parameters are estimated based on the EM algorithm and are used to measure the underlying dependence by decomposing the two sources of zeros. Compared to existing models, the proposed BZINB model is specifically designed for estimating dependence and is more flexible, while preserving the marginal zero-inflated negative binomial distributions. Additionally, it has a simple latent variable framework, allowing parameters to have clear and intuitive interpretations, and its computation is feasible with large scale data. Using a recent scRNA-seq dataset, we illustrate model fitting and how the model-based measures can be different from naive measures. The inferential ability of the proposed model is evaluated in a simulation study. An R package ‘bzinb’ is available on CRAN.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1947
Author(s):  
Samarendra Das ◽  
Anil Rai ◽  
Michael L. Merchant ◽  
Matthew C. Cave ◽  
Shesh N. Rai

Single-cell RNA-sequencing (scRNA-seq) is a recent high-throughput sequencing technique for studying gene expressions at the cell level. Differential Expression (DE) analysis is a major downstream analysis of scRNA-seq data. DE analysis the in presence of noises from different sources remains a key challenge in scRNA-seq. Earlier practices for addressing this involved borrowing methods from bulk RNA-seq, which are based on non-zero differences in average expressions of genes across cell populations. Later, several methods specifically designed for scRNA-seq were developed. To provide guidance on choosing an appropriate tool or developing a new one, it is necessary to comprehensively study the performance of DE analysis methods. Here, we provide a review and classification of different DE approaches adapted from bulk RNA-seq practice as well as those specifically designed for scRNA-seq. We also evaluate the performance of 19 widely used methods in terms of 13 performance metrics on 11 real scRNA-seq datasets. Our findings suggest that some bulk RNA-seq methods are quite competitive with the single-cell methods and their performance depends on the underlying models, DE test statistic(s), and data characteristics. Further, it is difficult to obtain the method which will be best-performing globally through individual performance criterion. However, the multi-criteria and combined-data analysis indicates that DECENT and EBSeq are the best options for DE analysis. The results also reveal the similarities among the tested methods in terms of detecting common DE genes. Our evaluation provides proper guidelines for selecting the proper tool which performs best under particular experimental settings in the context of the scRNA-seq.


2020 ◽  
Author(s):  
Weimiao Wu ◽  
Qile Dai ◽  
Yunqing Liu ◽  
Xiting Yan ◽  
Zuoheng Wang

AbstractSingle-cell RNA sequencing provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses. We propose a novel method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and other existing methods to seven single-cell datasets to compare their performance. Our results demonstrated that G2S3 is superior in recovering true expression levels, identifying cell subtypes, improving differential expression analyses, and recovering gene regulatory relationships, especially for mildly expressed genes.


2018 ◽  
Author(s):  
Wenhao Tang ◽  
François Bertaux ◽  
Philipp Thomas ◽  
Claire Stefanelli ◽  
Malika Saint ◽  
...  

Normalisation of single cell RNA sequencing (scRNA-seq) data is a prerequisite to their interpretation. The marked technical variability and high amounts of missing observations typical of scRNA-seq datasets make this task particularly challenging. Here, we introduce bayNorm, a novel Bayesian approach for scaling and inference of scRNA-seq counts. The method’s likelihood function follows a binomial model of mRNA capture, while priors are estimated from expression values across cells using an empirical Bayes approach. We demonstrate using publicly-available scRNA-seq datasets and simulated expression data that bayNorm allows robust imputation of missing values generating realistic transcript distributions that match single molecule FISH measurements. Moreover, by using priors informed by dataset structures, bayNorm improves accuracy and sensitivity of differential expression analysis and reduces batch effect compared to other existing methods. Altogether, bayNorm provides an efficient, integrated solution for global scaling normalisation, imputation and true count recovery of gene expression measurements from scRNA-seq data.


2018 ◽  
Author(s):  
Matthew D Young ◽  
Sam Behjati

AbstractBackgroundDroplet based single-cell RNA sequence analyses assume all acquired RNAs are endogenous to cells. However, any cell free RNAs contained within the input solution are also captured by these assays. This sequencing of cell free RNA constitutes a background contamination that confounds the biological interpretation of single-cell transcriptomic data.ResultsWe demonstrate that contamination from this ‘soup’ of cell free RNAs is ubiquitous, with experiment-specific variations in composition and magnitude. We present a method, SoupX, for quantifying the extent of the contamination and estimating ‘background corrected’ cell expression profiles that seamlessly integrate with existing downstream analysis tools. Applying this method to several datasets using multiple droplet sequencing technologies, we demonstrate that its application improves biological interpretation of otherwise misleading data, as well as improving quality control metrics.ConclusionsWe present ‘SoupX’, a tool for removing ambient RNA contamination from droplet based single cell RNA sequencing experiments. This tool has broad applicability and its application can improve the biological utility of existing and future data sets.Key PointsThe signal from droplet based single cell RNA sequencing is ubiquitously contaminated by capture of ambient mRNA.SoupX is a method to quantify the abundance of these ambient mRNAs and remove them.Correcting for ambient mRNA contamination improves biological interpretation.


Sign in / Sign up

Export Citation Format

Share Document