scholarly journals Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices

2020 ◽  
Author(s):  
Christine Poon

AbstractCulture medium is frequently modelled as water in computational fluid dynamics (CFD) analysis of in vitro culture systems involving flow, such as bioreactors and organ-on-chips. However, culture medium can be expected to have different properties to water due to its higher solute content. Furthermore, cellular activities such as metabolism and secretion of ECM proteins alter the composition of culture medium and therefore its properties during culture. As these properties directly determine the hydromechanical stimuli exerted on cells in vitro, these, along with any changes during culture must be known for CFD modelling accuracy and meaningful interpretation of cellular responses. In this study, the density and dynamic viscosity of DMEM and RPMI-1640 media supplemented with typical concentrations of foetal bovine serum (0, 5, 10 and 20% v/v) were measured to serve as a reference for computational design analysis. Any changes in the properties of medium during culture were also investigated with NCI-H460 and HN6 cell lines. The density and dynamic viscosity of the media increased proportional to the % volume of added foetal bovine serum (FBS). Importantly, the viscosity of 5% FBS-supplemented RPMI-1640 was found to increase significantly after 3 days of culture of NCI-H460 and HN6 cell lines, with distinct differences between magnitude of change for each cell line. Finally, these experimentally-derived values were applied in CFD analysis of a simple microfluidic device, which demonstrated clear differences in maximum wall shear stress and pressure between fluid models. Overall, these results highlight the importance of characterizing model-specific properties for CFD design analysis of cell culture systems.

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Brandon M. Lehrich ◽  
Yaxuan Liang ◽  
Massimo S. Fiandaca

2016 ◽  
Vol 819 ◽  
pp. 356-360
Author(s):  
Mazharul Islam ◽  
Jiří Fürst ◽  
David Wood ◽  
Farid Nasir Ani

In order to evaluate the performance of airfoils with computational fluid dynamics (CFD) tools, modelling of transitional region in the boundary layer is very critical. Currently, there are several classes of transition-based turbulence model which are based on different methods. Among these, the k-kL- ω, which is a three equation turbulence model, is one of the prominent ones which is based on the concept of laminar kinetic energy. This model is phenomenological and has several advantageous features. Over the years, different researchers have attempted to modify the original version which was proposed by Walter and Cokljat in 2008 to enrich the modelling capability. In this article, a modified form of k-kL-ω transitional turbulence model has been used with the help of OpenFOAM for an investigative CFD analysis of a NACA 4-digit airfoil at range of angles of attack.


Author(s):  
Lilas Deville ◽  
Mihai Arghir

Brush seals are a mature technology that has generated extensive experimental and theoretical work. Theoretical models range from simple correlations with experimental results to advanced numerical approaches coupling the bristles deformation with the flow in the brush. The present work follows this latter path. The bristles of the brush are deformed by the pressure applied by the flow, by the interference with the rotor and with the back plate. The bristles are modeled as linear beams but a nonlinear numerical algorithm deals with the interferences. The brush with its deformed bristles is then considered as an anisotropic porous medium for the leakage flow. Taking into account, the variation of the permeability with the local geometric and flow conditions represents the originality of the present work. The permeability following the principal directions of the bristles is estimated from computational fluid dynamics (CFD) calculations. A representative number of bristles are selected for each principal direction and the CFD analysis domain is delimited by periodicity and symmetry boundary conditions. The parameters of the CFD analysis are the local Reynolds number and the local porosity estimated from the distance between the bristles. The variations of the permeability are thus deduced for each principal direction and for Reynolds numbers and porosities characteristic for brush seal. The leakage flow rates predicted by the present approach are compared with experimental results from the literature. The results depict also the variations of the pressures, of the local Reynolds number, of the permeability, and of the porosity through the entire brush seal.


Sign in / Sign up

Export Citation Format

Share Document