scholarly journals Optimal Control and Cost-effectiveness Analysis of an HPV-Chlamydia Trachomatis co-infection model

Author(s):  
Andrew Omame ◽  
Celestine Uchenna Nnanna ◽  
Simeon Chioma Inyama

In this work, a co-infection model for human papillomavirus (HPV) and Chlamydia trachomatis with cost-effectiveness optimal control analysis is developed and analyzed. The disease-free equilibrium of the co-infection model is \textbf{shown not to} be globally asymptotically stable, when the associated reproduction number is less unity. It is proven that the model undergoes the phenomenon of backward bifurcation when the associated reproduction number is less than unity. It is also shown that HPV re-infection ($\varepsilon\sst{p} \neq 0$) induced the phenomenon of backward bifurcation. Numerical simulations of the optimal control model showed that: (i) focusing on HPV intervention strategy alone (HPV prevention and screening), in the absence of Chlamydia trachomatis control, leads to a positive population level impact on the total number of individuals singly infected with Chlamydia trachomatis, (ii) Concentrating on Chlamydia trachomatis intervention controls alone (Chlamydia trachomatis prevention and treatment), in the absence of HPV intervention strategies, a positive population level impact is observed on the total number of individuals singly infected with HPV. Moreover, the strategy that combines and implements HPV and Chlamydia trachomatis prevention controls is the most cost-effective of all the control strategies in combating the co-infections of HPV and Chlamydia trachomatis.

2020 ◽  
Author(s):  
Eziaku Chinomso Chukukere ◽  
Simeon Chioma Inyama ◽  
Andrew Omame

Abstract A model for Chlamydia trachomatis (CT) and Gonorrhea codynamics, with optimal control analysis is studied and analyzed to assess the impact of targetted treatment for each of the diseases on their co-infections in a population. The model exhibits the dynamical feature of backward bifurcation when the associated reproduction number is less than unity. The global asymptotic stability of the disease-free equilibrium of the co-infection model is also proven not to exist, when the associated reproduction number is below unity. The necessary conditions for the existence of optimal control and the optimality system for the co-infection model is established using the Pontryagin's Maximum Principle. Simulations of the optimal control model reveal that the intervention strategy which implements female Chlamydia trachomatis treatment and male gonorrhea treatment is the most effective in combating the co-infections of Chlamydia trachomatis and gonorrhea.


2020 ◽  
Author(s):  
Kenneth Uzoma Egeonu ◽  
Simeon Chioma Inyama ◽  
Andrew Omame

A mathematical model for two strains of Malaria and Cholera with optimal control is studied and analyzed to assess the impact of treatment controls in reducing the burden of the diseases in a population, in the presence of malaria drug resistance. The model is shown to exhibit the dynamical property of backward bifurcation when the associated reproduction number is less than unity. The global asymptotic stability of the disease-free equilibrium of the model is proven not to exist. The necessary conditions for the existence of optimal control and the optimality system for the model is established using the Pontryagin's Maximum Principle. Numerical simulations of the optimal control model reveal that malaria drug resistance can greatly influence the co-infection cases averted, even in the presence of treatment controls for co-infected individuals.


2020 ◽  
Author(s):  
Andrew Omame ◽  
Daniel Okuonghae ◽  
Ugochukwu Emmanuel Nwafor ◽  
Benedict Udoka Odionyenma

In this work, we develop and present a co-infection model for human papillomavirus (HPV) and syphilis with cost-effectiveness optimal control analysis. The full co-infection model is shown to undergo the phenomenon of backward bifurcation when a certain condition is satisfied. The global asymptotic stability of the disease-free equilibrium of the full model is shown \textbf{not to exist}, when the associated reproduction number is less than unity. The existence of endemic equilibrium of the syphilis-only sub-model is shown to exist and the global asymptotic stability of the disease-free and endemic equilibria of both the syphilis-only sub-model and HPV-only sub-model were established. The global asymptotic stability of disease-free equilibrium of the HPV-only sub-model is also proven. Numerical simulations of the optimal control model showed that the optimal control strategy which implements syphilis treatment controls for singly infected individuals is the most cost-effective of all the control strategies in reducing the burden of HPV and syphilis co-infections.


2020 ◽  
Author(s):  
Andrew Omame ◽  
Daniel Okuonghae

A co-infection model for oncogenic Human papillomavirus (HPV) and Tuberculosis (TB), with optimal control and cost-effectiveness analysis is studied and analyzed to assess the impact of controls against incident infection and against infection with HPV by TB infected individuals as well as optimal TB treatment in reducing the burden of the co-infection of the two diseases in a population. The co-infection model is shown to exhibit the dynamical property of backward bifurcation when the associated reproduction number is less than unity. Furthermore, it is shown that TB and HPV re-infection parameters (ϕp ≠ 0 and σT ≠ 0) as well as TB exogenous re-infection term (ϵ1 ≠ 0) oncogenic HPV-TB co-infection model. The global asymptotic stability of the disease-free equilibrium of the co-infection model is also proven not to exist, when the associated reproduction number is below unity. The necessary conditions for the existence of optimal control and the optimality system for the co-infection model is established using the Pontryagin's Maximum Principle. Uncertainty and global sensitivity analysis are also carried out to determine the top ranked parameters that drive the dynamics of the co-infection model, when the associated reproduction numbers as well as the infected populations are used as response functions. Numerical simulations of the optimal control model reveal that the intervention strategy which combines and implements control against HPV infection by TB infected individuals as well as TB treatment control for dually infected individuals is the most cost-effective of all the control strategies for the control and management of the burden of oncogenic HPV and TB co-infection.


Author(s):  
A. Omame ◽  
D. Okuonghae ◽  
U. E. Nwafor ◽  
B. U. Odionyenma

A co-infection model for human papillomavirus (HPV) and syphilis with cost-effectiveness optimal control analysis is developed and presented. The full co-infection model is shown to undergo the phenomenon of backward bifurcation when a certain condition is satisfied. The global asymptotic stability of the disease-free equilibrium of the full model is shown not to exist when the associated reproduction number is less than unity. The existence of endemic equilibrium of the syphilis-only sub-model is shown to exist and the global asymptotic stability of the disease-free and endemic equilibria of the syphilis-only sub-model was established, for a special case. Sensitivity analysis is also carried out on the parameters of the model. Using the syphilis associated reproduction number, [Formula: see text], as the response function, it is observed that the five-ranked parameters that drive the dynamics of the co-infection model are the demographic parameter [Formula: see text], the effective contact rate for syphilis transmission, [Formula: see text], the progression rate to late stage of syphilis [Formula: see text], and syphilis treatment rates: [Formula: see text] and [Formula: see text] for co-infected individuals in compartments [Formula: see text] and [Formula: see text], respectively. Moreover, when the HPV associated reproduction number, [Formula: see text], is used as the response function, the five most dominant parameters that drive the dynamics of the model are the demographic parameter [Formula: see text], the effective contact rate for HPV transmission, [Formula: see text], the fraction of HPV infected who develop persistent HPV [Formula: see text], the fraction of individuals vaccinated against incident HPV infection [Formula: see text] and the HPV vaccine efficacy [Formula: see text]. Numerical simulations of the optimal control model showed that the optimal control strategy which implements syphilis treatment controls for singly infected individuals is the most cost-effective of all the control strategies in reducing the burden of HPV and syphilis co-infections.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 971
Author(s):  
Mlyashimbi Helikumi ◽  
Moatlhodi Kgosimore ◽  
Dmitry Kuznetsov ◽  
Steady Mushayabasa

In this paper, a mathematical model for the transmission dynamics of Trypanosoma brucei rhodesiense that incorporates three species—namely, human, animal and vector—is formulated and analyzed. Two controls representing awareness campaigns and insecticide use are investigated in order to minimize the number of infected hosts in the population and the cost of implementation. Qualitative analysis of the model showed that it exhibited backward bifurcation generated by awareness campaigns. From the optimal control analysis we observed that optimal awareness and insecticide use could lead to effective control of the disease even when they were implemented at low intensities. In addition, it was noted that insecticide control had a greater impact on minimizing the spread of the disease compared to awareness campaigns.


Sign in / Sign up

Export Citation Format

Share Document