scholarly journals Molecular basis for SARS-CoV-2 spike affinity for human ACE2 receptor

2020 ◽  
Author(s):  
Julián M. Delgado ◽  
Nalvi Duro ◽  
David M. Rogers ◽  
Alexandre Tkatchenko ◽  
Sagar A. Pandit ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused substantially more infections, deaths, and economic disruptions than the 2002-2003 SARS-CoV. The key to understanding SARS-CoV-2’s higher infectivity may lie in its host receptor recognition mechanism. This is because experiments show that the human ACE2 protein, which serves as the primary receptor for both CoVs, binds to CoV-2’s spike protein 5-20 fold stronger than SARS-CoV’s spike protein. The molecular basis for this difference in binding affinity, however, remains unexplained and, in fact, a comparison of X-ray structures leads to an opposite proposition. To gain insight, we use all-atom molecular dynamics simulations. Free energy calculations indicate that CoV-2’s higher affinity is due primarily to differences in specific spike residues that are local to the spike-ACE2 interface, although there are allosteric effects in binding. Comparative analysis of equilibrium simulations reveals that while both CoV and CoV-2 spike-ACE2 complexes have similar interfacial topologies, CoV-2’s spike protein engages in greater numbers, combinatorics and probabilities of hydrogen bonds and salt bridges with ACE2. We attribute CoV-2’s higher affinity to these differences in polar contacts, and these findings also highlight the importance of thermal structural fluctuations in spike-ACE2 complexation. We anticipate that these findings will also inform the design of spike-ACE2 peptide blockers that, like in the cases of HIV and Influenza, can serve as antivirals.

2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


Author(s):  
Julian Delgado ◽  
Nalvi Duro ◽  
David Rogers ◽  
Alexandre Tkatchenko ◽  
Sagar Pandit ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused substantially more infections, deaths, and economic disruptions than the 2002-2003 SARS-CoV. The key to understanding SARS-CoV-2’s higher infectivity lies partly in its host receptor recognition mechanism. Experiments show that the human ACE2 protein, which serves as the primary receptor for both CoVs, binds to the receptor binding domain (RBD) of CoV-2’s spike protein stronger than SARS-CoV’s spike RBD. The molecular basis for this difference in binding affinity, however, remains unexplained from X-ray structures. To go beyond insights gained from X-ray structures and investigate the role of thermal fluctuations in structure, we employ all-atom molecular dynamics simulations. Microseconds-long simulations reveal that while CoV and CoV-2 spike-ACE2 interfaces have similar conformational binding modes, CoV-2 spike interacts with ACE2 via a larger combinatorics of polar contacts, and on average, makes 45\% more polar contacts. Correlation analysis and thermodynamic calculations indicate that these differences in the density and dynamics of polar contacts arise from differences in spatial arrangements of interfacial residues, and dynamical coupling between interfacial and non-interfacial residues. These results recommend that ongoing efforts to design spike-ACE2 peptide blockers will benefit from incorporating dynamical information as well as allosteric coupling effects.


2020 ◽  
Author(s):  
Dr. Chirag N. Patel ◽  
Dr. Prasanth Kumar S. ◽  
Dr. Himanshu A. Pandya ◽  
Dr. Rakesh M. Rawal

<p>The pandemic outbreak of COVID-19 virus (SARS-CoV-2) has become critical global health issue. The biophysical and structural evidence shows that SARS-CoV-2 spike protein possesses higher binding affinity towards angiotensin-converting enzyme 2 (ACE2) and hemagglutinin-acetylesterase (HE) glycoprotein receptor. Hence, it was selected as a target to generate the potential candidates for the inhibition of HE glycoprotein. The present study focuses on extensive computational approaches which contains molecular docking, ADMET prediction followed by molecular dynamics simulations and free energy calculations. Furthermore, virtual screening of NPACT compounds identified 3,4,5-Trihydroxy-1,8-bis[(2R,3R)-3,5,7-trihydroxy-3,4-dihydro-2H-chromen-2-yl]benzo[7]annulen-6-one, Silymarin, Withanolide D, Spirosolane and Oridonin were interact with high affinity. The ADMET prediction revealed pharmacokinetics and drug-likeness properties of top-ranked compounds. Molecular dynamics simulations and binding free energy calculations affirmed that these five NPACT compounds were robust HE inhibitor.</p>


Langmuir ◽  
2013 ◽  
Vol 29 (35) ◽  
pp. 11135-11144 ◽  
Author(s):  
Qiao Xue ◽  
Ji-Long Zhang ◽  
Qing-Chuan Zheng ◽  
Ying-Lu Cui ◽  
Lin Chen ◽  
...  

2011 ◽  
Vol 115 (24) ◽  
pp. 7940-7949 ◽  
Author(s):  
Lucas Bleicher ◽  
Erica T. Prates ◽  
Thiago C. F. Gomes ◽  
Rodrigo L. Silveira ◽  
Alessandro S. Nascimento ◽  
...  

2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


2020 ◽  
Author(s):  
Sean A. Newmister ◽  
Kinshuk Raj Srivastava ◽  
Rosa V. Espinoza ◽  
Kersti Caddell Haatveit ◽  
Yogan Khatri ◽  
...  

Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C-H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C-H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C-H bonds. Previously, we reported the in vitro characterization of an oxidative tailoring cascade in which TamI, a multifunctional P450 functions co-dependently with the TamL flavoprotein to catalyze regio- and stereoselective hydroxylations and epoxidation to yield tirandamycin A and tirandamycin B. TamI follows a defined order including 1) C10 hydroxylation, 2) C11/C12 epoxidation, and 3) C18 hydroxylation. Here we present a structural, biochemical, and computational investigation of TamI to understand the molecular basis of its substrate binding, diverse reactivity, and specific reaction sequence. The crystal structure of TamI in complex with tirandamycin C together with molecular dynamics simulations and targeted mutagenesis suggest that hydrophobic interactions with the polyene chain of its natural substrate are critical for molecular recognition. QM/MM calculations and molecular dynamics simulations of TamI with variant substrates provided detailed information on the molecular basis of sequential reactivity, and pattern of regio- and stereo-selectivity in catalyzing the three-step oxidative cascade.<br>


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8718-8729
Author(s):  
Jixue Sun ◽  
Meijiang Liu ◽  
Na Yang

The origin of SARS-CoV-2 through structural analysis of receptor recognition was investigated by molecular dynamics simulations.


Sign in / Sign up

Export Citation Format

Share Document