scholarly journals Population-based Carrier Screening and Prenatal Diagnosis of Fragile X Syndrome in East Asian Populations

2020 ◽  
Author(s):  
Qiwei Guo ◽  
Yih-Yuan Chang ◽  
Chien-Hao Huang ◽  
Yu-Shan Hsiao ◽  
Yu-Chiao Hsiao ◽  
...  

AbstractIdentification of carriers of fragile X syndrome (FXS) with the subsequent prenatal diagnosis, and knowledge of FXS-associated genetic profiles are essential for intervention in specific populations. We report the results of carrier screening of 39,458 East Asian adult women and prenatal diagnosis from 87 FXS carriers. The prevalence of FXS carriers and incidence of full mutation fetuses in carrier pregnancies were found to be 1/556 and 11.0%, respectively. The prevalence of FXS carriers and full mutation fetuses was estimated to be 1/581 and 1/3124 in East Asian populations, respectively. We confirmed the validity of the current threshold of CGG repeats for FMR1 categorization; the integral risks of full mutation expansion were approximately 6.0%, 43.8%, and 100% for premutation alleles with 55-74, 75-89, and ≥90 CGG repeats, respectively. The protective effect of AGG interruption in East Asian populations was validated, which is important in protecting premutation alleles with 75-89 CGG repeats from full mutation expansion. Lastly, family history was shown not an effective indicator for FXS carrier screening in East Asian populations and population-based screening was more cost-effective. This study provides an insight into the largest carrier screening and prenatal diagnosis for FXS in East Asian populations to date. The FXS-associated genetic profiles of East Asian populations are delineated and population-based carrier screening is shown to be promising for FXS intervention.

2020 ◽  
Author(s):  
Qiwei Guo ◽  
Yih Yuan Chang ◽  
Chien Hao Huang ◽  
Yu Shan Hsiao ◽  
Yu Chiao Hsiao ◽  
...  

1996 ◽  
Vol 43 (2) ◽  
pp. 383-388
Author(s):  
M Milewski ◽  
M Zygulska ◽  
J Bal ◽  
W H Deelen ◽  
E Obersztyn ◽  
...  

The unstable DNA sequence in the FMR1 gene was analyzed in 85 individuals from Polish families with fragile X syndrome in order to characterize mutations responsible for the disease in Poland. In all affected individuals classified on the basis of clinical features and expression of the fragile site at X(q27.3) a large expansion of the unstable sequence (full mutation) was detected. About 5% (2 of 43) of individuals with full mutation did not express the fragile site. Among normal alleles, ranging in size from 20 to 41 CGG repeats, allele with 29 repeats was the most frequent (37%). Transmission of premutated and fully mutated alleles to the offspring was always associated with size increase. No change in repeat number was found when normal alleles were transmitted.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 136
Author(s):  
Karen Kengne Kamga ◽  
Séraphin Nguefack ◽  
Khuthala Minka ◽  
Edmond Wonkam Tingang ◽  
Alina Esterhuizen ◽  
...  

Fragile X Syndrome (FXS), an X-linked dominant monogenic condition, is the main genetic cause of intellectual disability (ID) and autism spectrum disorder (ASD). FXS is associated with an expansion of CGG repeat sequence in the Fragile X Mental Retardation gene 1 (FMR1) on chromosome X. Following a neuropediatric assessment of two male siblings who presented with signs of FXS that was confirmed with molecular testing, we provided cascade counselling and testing to the extended family. A total of 46 individuals were tested for FXS; among them, 58.70% (n = 27) were females. The mean age was 9.4 (±5) years for children and 45.9 (±15.9) years for adults. Pedigree analysis suggested that the founder of these families was likely a normal transmitting male. Four out of 19 males with clinical ID were confirmed to have a full mutation for FXS, while 14/27 females had a pathologic CGG expansion (>56 CGG repeats) on one of their X chromosomes. Two women with premature menopause were confirmed of being carriers of premutation (91 and 101 CGG repeats). We also identified maternal alleles (91 and 126 CGG repeats) which expanded to a full mutation in their offspring (>200 CGG repeats). This study is a rare report on FXS from Africa and illustrates the case scenario of implementing genetic medicine for a neurogenetic condition in a rural setting.


2007 ◽  
Vol 9 (4) ◽  
pp. 199-207 ◽  
Author(s):  
Charles M Strom ◽  
Donghui Huang ◽  
Yuanyin Li ◽  
Feras M Hantash ◽  
Jenny Rooke ◽  
...  

2010 ◽  
Vol 56 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Stela Filipovic-Sadic ◽  
Sachin Sah ◽  
Liangjing Chen ◽  
Julie Krosting ◽  
Edward Sekinger ◽  
...  

Abstract Background: Fragile X syndrome (FXS) is a trinucleotide-repeat disease caused by the expansion of CGG sequences in the 5′ untranslated region of the FMR1 (fragile X mental retardation 1) gene. Molecular diagnoses of FXS and other emerging FMR1 disorders typically rely on 2 tests, PCR and Southern blotting; however, performance or throughput limitations of these methods currently constrain routine testing. Methods: We evaluated a novel FMR1 gene–specific PCR technology with DNA templates from 20 cell lines and 146 blinded clinical samples. The CGG repeat number was determined by fragment sizing of PCR amplicons with capillary electrophoresis, and results were compared with those for FMR1 Southern blotting analyses with the same samples. Results: The FMR1 PCR accurately detected full-mutation alleles up to at least 1300 CGG repeats and consisting of >99% GC character. All categories of alleles detected by Southern blotting, including 66 samples with full mutations, were also identified by the FMR1 PCR for each of the 146 clinical samples. Because all full mutation alleles in samples from heterozygous females were detected by the PCR, allele zygosity was reconciled in every case. The PCR reagents also detected a 1% mass fraction of a 940-CGG allele in a background of 99% 23-CGG allele—a roughly 5- fold greater sensitivity than obtained with Southern blotting. Conclusions: The novel PCR technology can accurately categorize the spectrum of FMR1 alleles, including alleles previously considered too large to amplify; reproducibly detect low abundance full mutation alleles; and correctly infer homozygosity in female samples, thus greatly reducing the need for sample reflexing to Southern blotting.


2015 ◽  
Vol 167 (10) ◽  
pp. 2485-2487 ◽  
Author(s):  
Zornitza Stark ◽  
David Francis ◽  
Lydia Gaffney ◽  
Jacqueline Greenberg ◽  
Louise Hills ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document