scholarly journals Deorphanisation of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning

2020 ◽  
Author(s):  
Julia Morud ◽  
Iris Hardege ◽  
He Liu ◽  
Taihong Wu ◽  
Swaraj Basu ◽  
...  

SummaryPentameric ligand-gated ion channels (LGCs) play conserved, critical roles in fast synaptic transmission, and changes in LGC expression and localisation are thought to underlie many forms of learning and memory. The C. elegans genome encodes a large number of LGCs without a known ligand or function. Here, we deorphanize five members of a family of Cys-loop LGCs by characterizing their diverse functional properties that are activated by biogenic amine neurotransmitters. To analyse the neuronal function of these LGCs, we show that a novel serotonin-gated cation channel, LGC-50, is essential for aversive olfactory learning. lgc-50 mutants show a specific defect in learned olfactory avoidance of pathogenic bacteria, a process known to depend on serotonergic neurotransmission. Remarkably, the expression of LGC-50 in neuronal processes is enhanced by olfactory conditioning; thus, the regulated expression of these receptors at synapses appears to represent a molecular cornerstone of the learning mechanism.

2021 ◽  
Author(s):  
Julia Morud ◽  
Iris Hardege ◽  
He Liu ◽  
Taihong Wu ◽  
Myung-Kyu Choi ◽  
...  

2021 ◽  
Author(s):  
Iris Hardege ◽  
Julia Morud ◽  
William R Schafer

Fast cholinergic neurotransmission is mediated by pentameric acetylcholine-gated ion channels; in particular, cationic nicotinic acetylcholine receptors play well-established roles in virtually all nervous systems. Acetylcholine-gated anion channels have also been identified in some invertebrate phyla, yet their roles in the nervous system are less well-understood. Here we describe the functional properties of five previously-uncharacterized acetylcholine-gated anion channels from C. elegans, including four from a novel nematode specific subfamily known as the diverse group. In addition to their activation by acetylcholine, these diverse group channels are activated at physiological concentrations by other ligands; three, encoded by the lgc-40, lgc-57 and lgc-58 genes, are activated by choline, while lgc-39 encoded channels are activated by octopamine and tyramine. Intriguingly, these and other acetylcholine-gated anion channels show extensive co-expression with cation-selective nicotinic receptors, implying that many cholinergic synapses may have both excitatory and inhibitory potential. Thus, the evolutionary expansion of cholinergic ligand-gated ion channels may enable complex synaptic signalling in an anatomically compact nervous system.


2020 ◽  
Author(s):  
Kishore K. Joshi ◽  
Tarmie L. Matlack ◽  
Stephanie Pyonteck ◽  
Ralph Menzel ◽  
Christopher Rongo

ABSTRACTMulticellular organisms use multiple pathways to restore protein homeostasis (proteostasis) in response to adverse physiological conditions, changing environment, and developmental aging. The nervous system can regulate proteostasis in different tissues, but it is unclear how it mobilizes proteostasis pathways to offset physiological decline. Here we show that C. elegans employs the humoral biogenic amine neurotransmitters dopamine, serotonin, and tyramine to regulate proteostasis and the activity of the Ubiquitin Proteasome System (UPS) in epithelial tissues. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq, we determined the expression profile of genes regulated by biogenic amine signaling. We find that biogenic amines promote the expression of a subset of cytochrome P450 monooxygenases involved in eicosanoid production from polyunsaturated fatty acids (PUFAs). Mutants for these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-3 PUFAs is required for UPS substrate turnover, whereas mutants that accumulate n-3 PUFAs show accelerated turnover of this GFP-based substrate. Our results suggest that neurosecretory sensory neurons release biogenic amines to modulate the lipid signaling profile, which in turn activates stress response pathways to maintain proteostasis.


Sign in / Sign up

Export Citation Format

Share Document