cytochrome p450 monooxygenases
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 82)

H-INDEX

42
(FIVE YEARS 6)

2021 ◽  
Vol 118 (52) ◽  
pp. e2110092118
Author(s):  
Sandra T. Krause ◽  
Pan Liao ◽  
Christoph Crocoll ◽  
Benoît Boachon ◽  
Christiane Förster ◽  
...  

Thymol and carvacrol are phenolic monoterpenes found in thyme, oregano, and several other species of the Lamiaceae. Long valued for their smell and taste, these substances also have antibacterial and anti-spasmolytic properties. They are also suggested to be precursors of thymohydroquinone and thymoquinone, monoterpenes with anti-inflammatory, antioxidant, and antitumor activities. Thymol and carvacrol biosynthesis has been proposed to proceed by the cyclization of geranyl diphosphate to γ-terpinene, followed by a series of oxidations via p-cymene. Here, we show that γ-terpinene is oxidized by cytochrome P450 monooxygenases (P450s) of the CYP71D subfamily to produce unstable cyclohexadienol intermediates, which are then dehydrogenated by a short-chain dehydrogenase/reductase (SDR) to the corresponding ketones. The subsequent formation of the aromatic compounds occurs via keto–enol tautomerisms. Combining these enzymes with γ-terpinene in in vitro assays or in vivo in Nicotiana benthamiana yielded thymol and carvacrol as products. In the absence of the SDRs, only p-cymene was formed by rearrangement of the cyclohexadienol intermediates. The nature of these unstable intermediates was inferred from reactions with the γ-terpinene isomer limonene and by analogy to reactions catalyzed by related enzymes. We also identified and characterized two P450s of the CYP76S and CYP736A subfamilies that catalyze the hydroxylation of thymol and carvacrol to thymohydroquinone when heterologously expressed in yeast and N. benthamiana. Our findings alter previous views of thymol and carvacrol formation, identify the enzymes involved in the biosynthesis of these phenolic monoterpenes and thymohydroquinone in the Lamiaceae, and provide targets for metabolic engineering of high-value terpenes in plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pramesti Istiandari ◽  
Shuhei Yasumoto ◽  
Pisanee Srisawat ◽  
Keita Tamura ◽  
Ayaka Chikugo ◽  
...  

Triterpenoids are plant specialized metabolites with various pharmacological activities. They are widely distributed in higher plants, such as legumes. Because of their low accumulation in plants, there is a need for improving triterpenoid production. Cytochrome P450 monooxygenases (CYPs) play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations, CYPs require the electrons that are transferred by NADPH-cytochrome P450 reductase (CPR). Plants possess two main CPR classes, class I and class II. CPR classes I and II have been reported to be responsible for primary and specialized (secondary) metabolism, respectively. In this study, we first analyzed the CPR expression level of three legumes species, Medicago truncatula, Lotus japonicus, and Glycyrrhiza uralensis, showing that the expression level of CPR class I was lower and more stable, while that of CPR class II was higher in almost all the samples. We then co-expressed different combinations of CYP716As and CYP72As with different CPR classes from these three legumes in transgenic yeast. We found that CYP716As worked better with CPR-I from the same species, while CYP72As worked better with any CPR-IIs. Using engineered yeast strains, CYP88D6 paired with class II GuCPR produced the highest level of 11-oxo-β-amyrin, the important precursor of high-value metabolites glycyrrhizin. This study provides insight into co-expressing genes from legumes for heterologous production of triterpenoids in yeast.


2021 ◽  
Author(s):  
Wadzani Palnam Dauda ◽  
Elkanah Glen ◽  
Peter Abraham ◽  
Charles Oluwaseun Adetunji ◽  
Daji Morumda ◽  
...  

Abstract Cytochrome P450s (P450s) are a unique multifamily class of enzymes that possess the capability to exhibit catalytic versatility in several biochemical reactions which entails metabolite biosynthesis, primary and secondary metabolism. Fusarium spp. is an important microorganism with many members known to produce secondary metabolites that cause plant diseases and mycotoxicoses in animals and humans. In this present study, from the initially screened 4,579 proteins, we elucidated the nature of abundance, evolutionary relationships, classification and cellular location of 320 cytochrome P450 from 17 phytopathogenic members of Fusarium species. The total CYPs protein sequences were phylogenetically grouped into seventeen (17) clades. Eighty-six (86) CYPs families and forty-eight (48) clans were identified. Twenty-seven (27) families were each found in only one species. The CYPs were found to be majorly localized in the endoplasmic reticulum. The non-ribosomal peptide synthetase-like (NRPS-like) gene cluster was the predominant secondary metabolic-related gene cluster across all the seventeen selected Fusarium species except in F. cucurbiticola and F. solani, where PolyKetide Synthase (PKS) was the most prevalent. The presence of numerous families and clans as observed in in this study shows the expansions of the CYPs families across Fusarium species, this CYPs family and clan expansion is often associated with the evolvement of several fungal traits that include their pathogenicity adaptation to survive on an extensive range of toxic substrates. Identification of P450 proteins in these pathogenic fungi provides fundamental information for further basic and applied biological research into the physiological and toxigenic roles of P450s in Fusarium species.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tuan-Anh M. Nguyen ◽  
Trinh-Don Nguyen ◽  
Yuen Yee Leung ◽  
Matthew McConnachie ◽  
Oleg Sannikov ◽  
...  

AbstractSemi-synthetic derivatives of camptothecin, a quinoline alkaloid found in the Camptotheca acuminata tree, are potent anticancer agents. Here we discovered two C. acuminata cytochrome P450 monooxygenases that catalyze regio-specific 10- and 11-oxidations of camptothecin, and demonstrated combinatorial chemoenzymatic C-H functionalizations of the camptothecin scaffold using the new enzymes to produce a suite of anticancer drugs, including topotecan (Hycamtin®) and irinotecan (Camptosar®). This work sheds new light into camptothecin metabolism, and represents greener approaches for accessing clinically relevant camptothecin derivatives.


Author(s):  
Taisei Yamamoto ◽  
Yoshie Hasegawa ◽  
Hiroaki Iwaki

ABSTRACT Cytochrome P450 monooxygenases play important roles in metabolism. Here, we report the identification and biochemical characterization of P450CHC, a novel self-sufficient cytochrome P450, from cyclohexanecarboxylate-degrading Paraburkholderia terrae KU-64. P450CHC was found to comprise a [2Fe-2S] ferredoxin domain, NAD(P)H-dependent FAD-containing reductase domain, FCD domain, and cytochrome P450 domain (in that order from the N terminus). Reverse transcription–polymerase chain reaction results indicated that the P450CHC-encoding chcA gene was inducible by cyclohexanecarboxylate. chcA overexpression in Escherichia coli and recombinant protein purification enabled functional characterization of P450CHC as a catalytically self-sufficient cytochrome P450 that hydroxylates cyclohexanecarboxylate. Kinetic analysis indicated that P450CHC largely preferred NADH (Km = 0.011 m m) over NADPH (Km = 0.21 m m). The Kd, Km, and kcat values for cyclohexanecarboxylate were 0.083 m m, 0.084 m m, and 15.9 s−1, respectively. The genetic and biochemical analyses indicated that the physiological role of P450CHC is initial hydroxylation in the cyclohexanecarboxylate degradation pathway.


2021 ◽  
Author(s):  
Shrawan Kumar Sahani ◽  
Vikas Kumar ◽  
Subhajit Pal

Pesticides are any substance used for controlling, preventing, destroying, repelling, or mitigating of pests. Neonicotinoids have been the most commonly used insecticide since the early 1990s, current market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors (nAChRs) that exhibit physicochemical properties, rendering them more useful over other classes of insecticides. This includes having a wide range of application techniques and efficacy in controlling sucking and biting insects. Although neonicotinoids are applied as foliar insecticides with possible direct exposure risks to honeybees, a large part of neonicotinoid use consists of seed coating or root drench application. There are three major detoxification enzymes involved in the development of resistance against insecticides viz., cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases. The repeatedly used use of compounds of the same active ingredients and application of excessive organophosphates (OPs) and pyrethroids in Bemisia tabaci. Resistance to insecticides resulting in loss of efficacy of many older insecticides has placed excessive pressure on novel products. One of the major limitations to resistance management is the occurrence of cross-resistance. This review briefly summarizes the current status of neonicotinoid resistance, the biochemical and mechanisms involved, and the implications for resistance management.


Author(s):  
Jenny Zhou ◽  
Shu-Ming Li

Abstract Cytochrome P450 monooxygenases (P450s) are considered nature’s most versatile catalysts and play a crucial role in regio- and stereoselective oxidation reactions on a broad range of organic molecules. The oxyfunctionalisation of unactivated carbon-hydrogen (C-H) bonds, in particular, represents a key step in the biosynthesis of many natural products as it provides substrates with increased reactivity for tailoring reactions. In this study, we investigated the function of the P450 enzyme TraB in the terrestric acid biosynthetic pathway. We firstly deleted the gene coding for the DNA repair subunit protein Ku70 by using split marker-based deletion plasmids for convenient recycling of the selection marker to improve gene targeting in Penicillium crustosum. Hereby, we reduced ectopic DNA integration and facilitated genetic manipulation in P. crustosum. Afterward, gene deletion in the Δku70 mutant of the native producer P. crustosum and heterologous expression in Aspergillus nidulans with precursor feeding proved the involvement of TraB in the formation of crustosic acid by catalysing the essential hydroxylation reaction of viridicatic acid. Key points •Deletion of Ku70 by using split marker approach for selection marker recycling. •Functional identification of the cytochrome P450 enzyme TraB. •Fulfilling the reaction steps in the terrestric acid biosynthesis.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12428
Author(s):  
Da-Cheng Hao ◽  
Pei Li ◽  
Pei-Gen Xiao ◽  
Chun-Nian He

Several main families of Ranunculales are rich in alkaloids and other medicinal compounds; many species of these families are used in traditional and folk medicine. Dichocarpum is a representative medicinal genus of Ranunculaceae, but the genetic basis of its metabolic phenotype has not been investigated, which hinders its sustainable conservation and utilization. We use the third-generation high-throughput sequencing and metabolomic techniques to decipher the full-length transcriptomes and metabolomes of five Dichocarpum species endemic in China, and 71,598 non-redundant full-length transcripts were obtained, many of which are involved in defense, stress response and immunity, especially those participating in the biosynthesis of specialized metabolites such as benzylisoquinoline alkaloids (BIAs). Twenty-seven orthologs extracted from trancriptome datasets were concatenated to reconstruct the phylogenetic tree, which was verified by the clustering analysis based on the metabolomic profile and agreed with the Pearson correlation between gene expression patterns of Dichocarpum species. The phylogenomic analysis of phytometabolite biosynthesis genes, e.g., (S)-norcoclaurine synthase, methyltransferases, cytochrome p450 monooxygenases, berberine bridge enzyme and (S)-tetrahydroprotoberberine oxidase, revealed the evolutionary trajectories leading to the chemodiversity, especially that of protoberberine type, aporphine type and bis-BIA abundant in Dichocarpum and related genera. The biosynthesis pathways of these BIAs are proposed based on full-length transcriptomes and metabolomes of Dichocarpum. Within Ranunculales, the gene duplications are common, and a unique whole genome duplication is possible in Dichocarpum. The extensive correlations between metabolite content and gene expression support the co-evolution of various genes essential for the production of different specialized metabolites. Our study provides insights into the transcriptomic and metabolomic landscapes of Dichocarpum, which will assist further studies on genomics and application of Ranunculales plants.


2021 ◽  
Vol 15 (11) ◽  
pp. e0009871
Author(s):  
Haina Sun ◽  
Robert W. Mertz ◽  
Letícia B. Smith ◽  
Jeffrey G. Scott

Aedes aegypti is an important vector of human viral diseases. This mosquito is distributed globally and thrives in urban environments, making it a serious risk to human health. Pyrethroid insecticides have been the mainstay for control of adult A. aegypti for decades, but resistance has evolved, making control problematic in some areas. One major mechanism of pyrethroid resistance is detoxification by cytochrome P450 monooxygenases (CYPs), commonly associated with the overexpression of one or more CYPs. Unfortunately, the molecular basis underlying this mechanism remains unknown. We used a combination of RNA-seq and proteomic analysis to evaluate the molecular basis of pyrethroid resistance in the highly resistant CKR strain of A. aegypti. The CKR strain has the resistance mechanisms from the well-studied Singapore (SP) strain introgressed into the susceptible Rockefeller (ROCK) strain genome. The RNA-seq and proteomics data were complimentary; each offering insights that the other technique did not provide. However, transcriptomic results did not quantitatively mirror results of the proteomics. There were 10 CYPs which had increased expression of both transcripts and proteins. These CYPs appeared to be largely trans-regulated, except for some CYPs for which we could not rule out gene duplication. We identified 65 genes and lncRNAs as potentially being responsible for elevating the expression of CYPs in CKR. Resistance was associated with multiple loci on chromosome 1 and at least one locus on chromosome 3. We also identified five CYPs that were overexpressed only as proteins, suggesting that stabilization of CYP proteins could be a mechanism of resistance. Future studies to increase the resolution of the resistance loci, and to examine the candidate genes and lncRNAs identified here will greatly enhance our understanding of CYP-mediated resistance in A. aegypti.


2021 ◽  
Vol 7 (10) ◽  
pp. 854
Author(s):  
Felix Heeger ◽  
Elizabeth C. Bourne ◽  
Christian Wurzbacher ◽  
Elisabeth Funke ◽  
Anna Lipzen ◽  
...  

Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources.


Sign in / Sign up

Export Citation Format

Share Document