scholarly journals Restricted constrictors: Space use and habitat selection of native Burmese pythons in Northeast Thailand

2020 ◽  
Author(s):  
Samantha Nicole Smith ◽  
Max Dolton Jones ◽  
Benjamin Michael Marshall ◽  
Surachit Waengsothorn ◽  
George A. Gale ◽  
...  

AbstractAnimal movement and resource use are tightly linked. Investigating these links to understand how animals utilize space and select habitats is especially relevant in areas that have been affected by habitat fragmentation and agricultural conversion. We set out to explore the space use and habitat selection of Burmese pythons (Python bivittatus) in a patchy land use matrix dominated by agricultural crops and human settlements. We used radio telemetry to record daily locations of seven Burmese pythons over the course of our study period of approximately 22 months. We created dynamic Brownian Bridge Movement Models (dBBMMs) for all individuals, using occurrence distributions to estimate extent of movements and motion variance to reveal temporal patterns. Then we used integrated step selection functions to determine whether individual movements were associated with particular landscape features (aquatic agriculture, forest, roads, settlements, terrestrial agriculture, water), and whether there were consistent associations at the population level. Our dBBMM estimates suggested that Burmese pythons made use of small areas (98.97 ± 35.42 ha), with low mean individual motion variance characterized by infrequent moves and long periods at a single location. At both the individual and population level, Burmese pythons in the agricultural matrix were associated with aquatic environments. Only one individual showed a strong avoidance for human settlements which is troublesome from a human-wildlife conflict angle, especially as Burmese pythons have been observed entering human settlements and consuming livestock in our study site. Our study is one of the first to contribute to the knowledge of Burmese python ecology in their native range as the majority of studies have focused on invasive populations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samantha Nicole Smith ◽  
Max Dolton Jones ◽  
Benjamin Michael Marshall ◽  
Surachit Waengsothorn ◽  
George A. Gale ◽  
...  

AbstractAnimal movement and resource use are tightly linked. Investigating these links to understand how animals use space and select habitats is especially relevant in areas affected by habitat fragmentation and agricultural conversion. We set out to explore the space use and habitat selection of Burmese pythons (Python bivittatus) in a heterogenous, agricultural landscape within the Sakaerat Biosphere Reserve, northeast Thailand. We used VHF telemetry to record the daily locations of seven Burmese pythons and created dynamic Brownian Bridge Movement Models to produce occurrence distributions and model movement extent and temporal patterns. To explore relationships between movement and habitat selection we used integrated step selection functions at both the individual and population level. Burmese pythons had a mean 99% occurrence distribution contour of 98.97 ha (range 9.05–285.56 ha). Furthermore, our results indicated that Burmese pythons had low mean individual motion variance, indicating infrequent moves and long periods at a single location. In general, Burmese pythons restricted movement and selected aquatic habitats but did not avoid potentially dangerous land use types like human settlements. Although our sample is small, we suggest that Burmese pythons are capitalizing on human disturbed landscapes.


2021 ◽  
Author(s):  
Anji D’souza ◽  
George Gale ◽  
Benjamin Michael Marshall ◽  
Daphawan Khamcha ◽  
Surachit Waengsothorn ◽  
...  

ABSTRACTPredator-prey interactions are fundamental drivers of population dynamics, yet rarely are both predator and prey species simultaneously studied. Despite being significant, widespread avian nest predators, research on the ecology of Southeast Asian snakes in relation to birds remains scarce. The green cat snake (Boiga cyanea) is a primary nest predator, responsible for ≈24% of forest songbird depredation in Northeast Thailand. We explored both diurnal and nocturnal movements of 14 (5 male, 9 female) adult B. cyanea with radio-telemetry for an average of 68 ± 16 days per individual, between 21 October 2017 and 8 June 2019 in the dry evergreen forest of the Sakaerat Biosphere Reserve (SBR). We quantified area of space use (ha) and activity through motion variance (Ϭm2) during the study period using dynamic Brownian bridge movement models, and linked our findings to a simultaneously-run avian nest monitoring study, initiated in 2013 within the same forest fragment. On average, movements, space use and activity differed between males and females, and between the avian nesting and non-nesting seasons. Males moved 51.37 m/day farther than females. They used areas 15.09 ha larger than females, and their activity was 3.91 Ϭm2 higher than that of females. In general, individuals moved 50.30 m/day farther during the nesting season than the non-nesting season. The snakes used areas 9.84 ha larger during the nesting season than the non-nesting season, and their activity during the nesting season was 3.24 Ϭm2 higher than that during the non-nesting season. All individuals were exclusively nocturnal, moving throughout the night, and often descending from higher diurnal refugia (>2 m) to forage closer to the ground after sunset. Boiga cyanea activity followed a similar trend to that of the recorded nest depredations at SBR. Our study links snake activity to nest depredations in SBR. Our openly-available data may yield further insight when combined with other major avian nest predator species like the congeneric invasive brown tree snake (Boiga irregularis) on the island of Guam.


2019 ◽  
Vol 132 (2) ◽  
pp. 126-139 ◽  
Author(s):  
Tera L. Edkins ◽  
Christopher M. Somers ◽  
Mark C. Vanderwel ◽  
Miranda J. Sadar ◽  
Ray G. Poulin

Pituophis catenifer sayi (Bullsnake) is a sparsely studied subspecies of conservation concern in Canada. Basic ecological information is lacking for P. c. sayi, which reaches its northern range limit in western Canada. To address this gap, we used radio-telemetry to examine space use and habitat selection in three populations of Bullsnakes in disjunct river valley systems (Frenchman, Big Muddy, and South Saskatchewan River Valleys) across their Saskatchewan range. Bullsnakes in two valleys used up to three times more space, travelled 2.5-times farther from overwintering sites, and had lower home range overlap than the third population. Landscape-level habitat selection was flexible, with snakes in all populations using both natural and human-modified habitats most frequently. Fine-scale habitat selection was also similar among populations, with Bullsnakes selecting sites within 1 m of refuges, regardless of whether they were natural or anthropogenic. Based on these results, Bullsnakes are flexible in their broad scale habitat use, as long as they are provided with fine scale refuge sites. The distribution of key seasonal resources appears to ultimately determine space use and habitat selection by Bullsnakes, regardless of the geographic location of the population.


Biologia ◽  
2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Witold Frąckowiak ◽  
Jörn Theuerkauf ◽  
Bartosz Pirga ◽  
Roman Gula

AbstractIn Europe, brown bear Ursus arctos habitats frequently overlap with human settlements and infrastructure. We tested whether anthropogenic structures played an important role in habitat selection by brown bears in the Bieszczady Mountains, Poland. We analysed 668 signs of brown bear presence recorded during 6 counts along 246 km of transects (total 1,476 km) in spring, summer and autumn of 1993 and 1994. Habitat selection of bears was more related to habitat and altitude than to human factors. Avoidance of roads, settlements and forest clearings influenced habitat selection by brown bears in spring but less in summer and autumn.


2019 ◽  
Vol 182 (1) ◽  
pp. 63
Author(s):  
James C. Doyle ◽  
David W. Sample ◽  
Lindsey Long ◽  
Timothy R. Van Deelen

2010 ◽  
Vol 74 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Floris M. van Beest ◽  
Leif Egil Loe ◽  
Atle Mysterud ◽  
Jos M. Milner

2020 ◽  
Author(s):  
Matt Ward ◽  
Benjamin Michael Marshall ◽  
Cameron Hodges ◽  
Ysabella Montano ◽  
Taksin Artchawakom ◽  
...  

To prevent population extirpations we need to understand species’ requirements, especially for critically endangered species inhabiting biodiversity hotspots. Studying animal movement provides insights into such requirements and gauges protected area effectiveness. Southeast Asian protected areas are becoming isolated; thus, we must ensure existing areas can sustain populations. We used multi-year radio-telemetry with the critically endangered Elongated Tortoise (Indotestudo elongata) to assess: movements, space-use, and conspecific overlap in a small protected area –Sakaerat Biosphere Reserve, Thailand. Movements were weakly seasonal, increasing in hot and wet seasons compared to the dry season. Individuals annual space-use varied (4.24–55.57 ha), while frequently overlapping with conspecifics. Conspecific comparisons revealed males (n = 5) moved similarly to females (n = 12) but used larger areas. Explorations of temporal avoidance versus attraction reveal more instances of conspecific attraction than avoidance (20:8). Avoidance/attraction behaviour appeared disconnected from carapace length or mass; therefore, that conspecific interaction patterns may potentially be a result of resources (mates or food) rather than competition (i.e., no apparent evidence of smaller individuals avoiding larger individuals). Female-female attraction suggests an absence of resource exclusion tactics at the temporal resolution of our data. Male-female attraction may indicate reproductive movements coinciding with hot season, but we failed to detect significant interactive effects linking conspecific attraction or step length to proximity to breeding activity. Our observations of annual space-use and space overlap present critical components when designing robust population assessments; assessments that will underline any successful I. elongata conservation effort. When considered in the context of previous work connecting space overlap with population viability, our results suggest the biosphere population of I. elongata to be reproductive, with enough resources to be potentially viable; the findings help emphasise the importance of even relatively small protected natural areas.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael L. Wysong ◽  
Bronwyn A. Hradsky ◽  
Gwenllian D. Iacona ◽  
Leonie E. Valentine ◽  
Keith Morris ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Helena Rheault ◽  
Charles R. Anderson ◽  
Maegwin Bonar ◽  
Robby R. Marrotte ◽  
Tyler R. Ross ◽  
...  

Understanding how animals use information about their environment to make movement decisions underpins our ability to explain drivers of and predict animal movement. Memory is the cognitive process that allows species to store information about experienced landscapes, however, remains an understudied topic in movement ecology. By studying how species select for familiar locations, visited recently and in the past, we can gain insight to how they store and use local information in multiple memory types. In this study, we analyzed the movements of a migratory mule deer (Odocoileus hemionus) population in the Piceance Basin of Colorado, United States to investigate the influence of spatial experience over different time scales on seasonal range habitat selection. We inferred the influence of short and long-term memory from the contribution to habitat selection of previous space use within the same season and during the prior year, respectively. We fit step-selection functions to GPS collar data from 32 female deer and tested the predictive ability of covariates representing current environmental conditions and both metrics of previous space use on habitat selection, inferring the latter as the influence of memory within and between seasons (summer vs. winter). Across individuals, models incorporating covariates representing both recent and past experience and environmental covariates performed best. In the top model, locations that had been previously visited within the same season and locations from previous seasons were more strongly selected relative to environmental covariates, which we interpret as evidence for the strong influence of both short- and long-term memory in driving seasonal range habitat selection. Further, the influence of previous space uses was stronger in the summer relative to winter, which is when deer in this population demonstrated strongest philopatry to their range. Our results suggest that mule deer update their seasonal range cognitive map in real time and retain long-term information about seasonal ranges, which supports the existing theory that memory is a mechanism leading to emergent space-use patterns such as site fidelity. Lastly, these findings provide novel insight into how species store and use information over different time scales.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura C. Gigliotti ◽  
Rob Slotow ◽  
Luke T. B. Hunter ◽  
Julien Fattebert ◽  
Craig Sholto-Douglas ◽  
...  

Abstract Variability in habitat selection can lead to differences in fitness; however limited research exists on how habitat selection of mid-ranking predators can influence population-level processes in multi-predator systems. For mid-ranking, or mesopredators, differences in habitat use might have strong demographic effects because mesopredators need to simultaneously avoid apex predators and acquire prey. We studied spatially-explicit survival of cheetahs (Acinonyx jubatus) in the Mun-Ya-Wana Conservancy, South Africa, to test hypotheses related to spatial influences of predation risk, prey availability, and vegetation complexity, on mesopredator survival. For each monitored cheetah, we estimated lion encounter risk, prey density, and vegetation complexity within their home range, on short-term (seasonal) and long-term (lifetime) scales and estimated survival based on these covariates. Survival was lowest for adult cheetahs and cubs in areas with high vegetation complexity on both seasonal and lifetime scales. Additionally, cub survival was negatively related to the long-term risk of encountering a lion. We suggest that complex habitats are only beneficial to mesopredators when they are able to effectively find and hunt prey, and show that spatial drivers of survival for mesopredators can vary temporally. Collectively, our research illustrates that individual variation in mesopredator habitat use can scale-up and have population-level effects.


Sign in / Sign up

Export Citation Format

Share Document