python bivittatus
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 2)

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Shannon E. Pittman ◽  
Ian A. Bartoszek

Abstract Background Dispersal behavior is a critical component of invasive species dynamics, impacting both spatial spread and population density. In South Florida, Burmese pythons (Python bivittatus) are an invasive species that disrupt ecosystems and have the potential to expand their range northward. Control of python populations is limited by a lack of information on movement behavior and vital rates, especially within the younger age classes. We radio-tracked 28 Burmese pythons from hatching until natural mortality for approximately 3 years. Pythons were chosen from 4 clutches deposited by adult females in 4 different habitats: forested wetland, urban interface, upland pine, and agricultural interface. Results Known-fate survival estimate was 35.7% (95% CI = 18% - 53%) in the first 6 months, and only 2 snakes survived 3 years post hatching. Snakes moving through ‘natural’ habitats had higher survival than snakes dispersing through ‘modified’ habitats in the first 6- months post-hatching. Predation was the most common source of mortality. Snakes from the agricultural interface utilized canals and displayed the largest net movements. Conclusions Our results suggest that pythons may have lower survival if clutches are deposited in or near urbanized areas. Alternatively, juvenile pythons could quickly disperse to new locations by utilizing canals that facilitate linear movement. This study provides critical information about behavioral and life history characteristics of juvenile Burmese pythons that will inform management practices.


Biology Open ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Jillian M. Josimovich ◽  
Bryan G. Falk ◽  
Alejandro Grajal-Puche ◽  
Emma B. Hanslowe ◽  
Ian A. Bartoszek ◽  
...  

ABSTRACT Identifying which environmental and genetic factors affect growth pattern phenotypes can help biologists predict how organisms distribute finite energy resources in response to varying environmental conditions and physiological states. This information may be useful for monitoring and managing populations of cryptic, endangered, and invasive species. Consequently, we assessed the effects of food availability, clutch, and sex on the growth of invasive Burmese pythons (Python bivittatus Kuhl) from the Greater Everglades Ecosystem in Florida, USA. Though little is known from the wild, Burmese pythons have been physiological model organisms for decades, with most experimental research sourcing individuals from the pet trade. Here, we used 60 hatchlings collected as eggs from the nests of two wild pythons, assigned them to High or Low feeding treatments, and monitored growth and meal consumption for 12 weeks, a period when pythons are thought to grow very rapidly. None of the 30 hatchlings that were offered food prior to their fourth week post-hatching consumed it, presumably because they were relying on internal yolk stores. Although only two clutches were used in the experiment, we found that nearly all phenotypic variation was explained by clutch rather than feeding treatment or sex. Hatchlings from clutch 1 (C1) grew faster and were longer, heavier, in better body condition, ate more frequently, and were bolder than hatchlings from clutch 2 (C2), regardless of food availability. On average, C1 and C2 hatchling snout-vent length (SVL) and weight grew 0.15 cm d−1 and 0.10 cm d−1, and 0.20 g d−1 and 0.03 g d−1, respectively. Additional research may be warranted to determine whether these effects remain with larger clutch sample sizes and to identify the underlying mechanisms and fitness implications of this variation to help inform risk assessments and management. This article has an associated First Person interview with the first author of the paper.


Author(s):  
Alessandro Grioni ◽  
Kar Wing To ◽  
Paul Crow ◽  
Liz Rose-Jeffreys ◽  
Kar Keung Ching ◽  
...  

Ophidiomycosis (also referred to as snake fungal disease) is an emerging infectious disease caused by Ophidiomyces ophidiicola ( Oo ). PCR was used to detect Oo in a Burmese python ( Python bivittatus ) submitted to a rescue center in Hong Kong with skin lesions. This is the first documented case of ophidiomycosis in Asia and the first detection of this disease in this species. More research is needed in Asia to determine the prevalence of this mycosis, its relationship with other species and its ecological importance. These findings also highlight a significant role played by wildlife rescue centres in monitoring wildlife diseases and ecosystem health


2021 ◽  
Vol 14 (8) ◽  
pp. 715
Author(s):  
Alexia Damour ◽  
Magali Garcia ◽  
Hye-Sun Cho ◽  
Andy Larivière ◽  
Nicolas Lévêque ◽  
...  

Hg-CATH and Pb-CATH4 are cathelicidins from Heterocephalus glaber and Python bivittatus that have been previously identified as potent antibacterial peptides. However, their antiviral properties were not previously investigated. In this study, their activity against the herpes simplex virus (HSV)-1 was evaluated during primary human keratinocyte infection. Both of them significantly reduced HSV-1 DNA replication and production of infectious viral particles in keratinocytes at noncytotoxic concentrations, with the stronger activity of Pb-CATH4. These peptides did not show direct virucidal activity and did not exhibit significant immunomodulatory properties, except for Pb-CATH4, which exerted a moderate proinflammatory action. All in all, our results suggest that Hg-CATH and Pb-CATH4 could be potent candidates for the development of new therapies against HSV-1.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nathan D. Burkett-Cadena ◽  
Erik M. Blosser ◽  
Anne A. Loggins ◽  
Monica C. Valente ◽  
Maureen T. Long ◽  
...  

AbstractThe composition of wildlife communities can have strong effects on transmission of zoonotic vector-borne pathogens, with more diverse communities often supporting lower infection prevalence in vectors (dilution effect). The introduced Burmese python, Python bivittatus, is eliminating large and medium-sized mammals throughout southern Florida, USA, impacting local communities and the ecology of zoonotic pathogens. We investigated invasive predator-mediated impacts on ecology of Everglades virus (EVEV), a zoonotic pathogen endemic to Florida that circulates in mosquito-rodent cycle. Using binomial generalized linear mixed effects models of field data at areas of high and low python densities, we show that increasing diversity of dilution host (non-rodent mammals) is associated with decreasing blood meals on amplifying hosts (cotton rats), and that increasing cotton rat host use is associated with increasing EVEV infection in vector mosquitoes. The Burmese python has caused a dramatic decrease in mammal diversity in southern Florida, which has shifted vector host use towards EVEV amplifying hosts (rodents), resulting in an indirect increase in EVEV infection prevalence in vector mosquitoes, putatively elevating human transmission risk. Our results indicate that an invasive predator can impact wildlife communities in ways that indirectly affect human health, highlighting the need for conserving biological diversity and natural communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samantha Nicole Smith ◽  
Max Dolton Jones ◽  
Benjamin Michael Marshall ◽  
Surachit Waengsothorn ◽  
George A. Gale ◽  
...  

AbstractAnimal movement and resource use are tightly linked. Investigating these links to understand how animals use space and select habitats is especially relevant in areas affected by habitat fragmentation and agricultural conversion. We set out to explore the space use and habitat selection of Burmese pythons (Python bivittatus) in a heterogenous, agricultural landscape within the Sakaerat Biosphere Reserve, northeast Thailand. We used VHF telemetry to record the daily locations of seven Burmese pythons and created dynamic Brownian Bridge Movement Models to produce occurrence distributions and model movement extent and temporal patterns. To explore relationships between movement and habitat selection we used integrated step selection functions at both the individual and population level. Burmese pythons had a mean 99% occurrence distribution contour of 98.97 ha (range 9.05–285.56 ha). Furthermore, our results indicated that Burmese pythons had low mean individual motion variance, indicating infrequent moves and long periods at a single location. In general, Burmese pythons restricted movement and selected aquatic habitats but did not avoid potentially dangerous land use types like human settlements. Although our sample is small, we suggest that Burmese pythons are capitalizing on human disturbed landscapes.


Author(s):  
Yasmin Stangl Von Czekus ◽  
Ana Caroline da Silva Néto Souza ◽  
Paulo Roberto Bahiano Ferreira ◽  
Elainne Maria Beanes da Silva Santos ◽  
Larissa Matos Costa ◽  
...  
Keyword(s):  

Amino Acids ◽  
2021 ◽  
Vol 53 (2) ◽  
pp. 313-317
Author(s):  
Soundrarajan Nagasundarapandian ◽  
Hye-sun Cho ◽  
Somasundaram Prathap ◽  
Mingue Kang ◽  
Munjeong Choi ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicholas M. Whitney ◽  
Connor F. White ◽  
Brian J. Smith ◽  
Michael S. Cherkiss ◽  
Frank J. Mazzotti ◽  
...  

Abstract Background The establishment of Burmese pythons (Python bivittatus) in Everglades National Park, Florida, USA, has been connected to a > 90% decline in the mesomammal population in the park and is a major threat to native reptile and bird populations. Efforts to control this population are underway, but are hampered by a lack of information about fine-scale activity cycles and ecology of these cryptic animals in the wild. We aimed to establish a technique for monitoring the activity of Burmese pythons in the wild using acceleration data loggers (ADLs), while attempting to identify any behavioral patterns that could be used to help manage this invasive species in the Greater Everglades and South Florida. Results We obtained continuous acceleration and temperature data from four wild snakes over periods of 19 to 95 days (mean 54 ± 33 days). Snakes spent 86% of their time at rest and 14% of their time active, including transiting between locations. All snakes showed at least one period of continuous transiting lasting 10 h or more, with one animal transiting continuously for a period of 58.5 h. Acceleration data logger-derived transiting bout duration was significantly correlated with the distance snakes traveled per hour for two snakes that also carried GPS loggers. Snakes were most active in midday or early-night depending on individual and time of year, but all snakes were least likely to be active in the early mornings (0400–0700 h local time). Very little movement took place at temperatures below 14 °C or above 24 °C, with most movement taking place between 15° and 20 °C. One animal showed a highly unusual rolling event that may be indicative of a predation attempt, but this could not be confirmed. Conclusions Fine-scale activity and some behaviors were apparent from ADL data, making ADLs a potentially valuable, unbiased tool for monitoring large-bodied snakes in the wild. Snakes spent the majority of their time resting, but also moved continuously for several hours at a time during bouts of transiting. Results suggest that individuals may shift their diel activity pattern based on season. Understanding seasonal differences in activity levels can improve the accuracy of population estimates, help detect range expansion, and improve managers’ ability to find and capture individuals.


Sign in / Sign up

Export Citation Format

Share Document