scholarly journals Nature and dimensions of the cytokine storm and its attenuation by convalescent plasma in severe COVID-19

Author(s):  
Purbita Bandopadhyay ◽  
Ranit D’Rozario ◽  
Abhishake Lahiri ◽  
Jafar Sarif ◽  
Yogiraj Ray ◽  
...  

SummaryTo characterize key components and dynamics of the cytokine storm associated with severe COVID-19 disease, we assessed abundance and correlative expression of a panel of forty eight cytokines in patients suffering from acute respiratory distress syndrome (ARDS), as compared to patients with mild disease. Then in a randomized control trial on convalescent plasma therapy (CPT) in COVID-19 ARDS, we analyzed the immediate effects of CPT on the dynamics of the cytokine storm as a correlate for the level of hypoxia experienced by the patients. Plasma level of monocyte chemotactic protein 3 was found to be a key correlate for clinical improvement, irrespective of therapy received. We also identified a hitherto unappreciated anti-inflammatory role of CPT independent of its neutralizing antibody content. Neutralizing antibodies as well as reductions in circulating interleukin-6 and interferon gamma induced protein 10, both contributed to marked immediate reductions in hypoxia in severe COVID-19 patients receiving CPT.Abstract Figure

Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06510
Author(s):  
Azwin Mengindra Putera ◽  
Zahrah Hikmah ◽  
Anang Endaryanto ◽  
Irwanto ◽  
Margarita Maria Maramis

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
S. P. Somashekhar ◽  
C. Rohit Kumar ◽  
Anil Jampani ◽  
Vijay Ahuja ◽  
Sushmita H. Rakshit ◽  
...  

2005 ◽  
Vol 79 (23) ◽  
pp. 14804-14814 ◽  
Author(s):  
Jason Hammonds ◽  
Xuemin Chen ◽  
Timothy Fouts ◽  
Anthony DeVico ◽  
David Montefiori ◽  
...  

ABSTRACT A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.


2007 ◽  
Vol 82 (2) ◽  
pp. 638-651 ◽  
Author(s):  
Yun Li ◽  
Bradley Cleveland ◽  
Igor Klots ◽  
Bruce Travis ◽  
Barbra A. Richardson ◽  
...  

ABSTRACT Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
David R. Martinez ◽  
Joshua J. Tu ◽  
Amit Kumar ◽  
Jesse F. Mangold ◽  
Riley J. Mangan ◽  
...  

ABSTRACT Each year, >180,000 infants become infected via mother-to-child transmission (MTCT) of HIV despite the availability of effective maternal antiretroviral treatments, underlining the need for a maternal HIV vaccine. We characterized 224 maternal HIV envelope (Env)-specific IgG monoclonal antibodies (MAbs) from seven nontransmitting and transmitting HIV-infected U.S. and Malawian mothers and examined their neutralization activities against nontransmitted autologous circulating viruses and infant-transmitted founder (infant-T/F) viruses. Only a small subset of maternal viruses, 3 of 72 (4%), were weakly neutralized by maternal linear V3 epitope-specific IgG MAbs, whereas 6 out of 6 (100%) infant-T/F viruses were neutralization resistant to these V3-specific IgG MAbs. We also show that maternal-plasma broadly neutralizing antibody (bNAb) responses targeting the V3 glycan supersite in a transmitting woman may have selected for an N332 V3 glycan neutralization-resistant infant-T/F virus. These data have important implications for bNAb-eliciting vaccines and passively administered bNAbs in the setting of MTCT. IMPORTANCE Efforts to eliminate MTCT of HIV with antiretroviral therapy (ART) have met little success, with >180,000 infant infections each year worldwide. It is therefore likely that additional immunologic strategies that can synergize with ART will be required to eliminate MTCT of HIV. To this end, understanding the role of maternal HIV Env-specific IgG antibodies in the setting of MTCT is crucial. In this study, we found that maternal-plasma broadly neutralizing antibody (bNAb) responses can select for T/F viruses that initiate infection in infants. We propose that clinical trials testing the efficacy of single bNAb specificities should not include HIV-infected pregnant women, as a single bNAb might select for neutralization-resistant infant-T/F viruses.


2017 ◽  
Vol 312 (6) ◽  
pp. F951-F962 ◽  
Author(s):  
Josef G. Heuer ◽  
Shannon M. Harlan ◽  
Derek D. Yang ◽  
Dianna L. Jaqua ◽  
Jeffrey S. Boyles ◽  
...  

Transforming growth factor-alpha (TGFA) has been shown to play a role in experimental chronic kidney disease associated with nephron reduction, while its role in diabetic kidney disease (DKD) is unknown. We show here that intrarenal TGFA mRNA expression, as well as urine and serum TGFA, are increased in human DKD. We used a TGFA neutralizing antibody to determine the role of TGFA in two models of renal disease, the remnant surgical reduction model and the uninephrectomized (uniNx) db/db DKD model. In addition, the contribution of TGFA to DKD progression was examined using an adeno-associated virus approach to increase circulating TGFA in experimental DKD. In vivo blockade of TGFA attenuated kidney disease progression in both nondiabetic 129S6 nephron reduction and Type 2 diabetic uniNx db/db models, whereas overexpression of TGFA in uniNx db/db model accelerated renal disease. Therapeutic activity of the TGFA antibody was enhanced with renin angiotensin system inhibition with further improvement in renal parameters. These findings suggest a pathologic contribution of TGFA in DKD and support the possibility that therapeutic administration of neutralizing antibodies could provide a novel treatment for the disease.


Sign in / Sign up

Export Citation Format

Share Document