scholarly journals Do auditory mismatch responses differ between acoustic features?

2020 ◽  
Author(s):  
HyunJung An ◽  
Shing Ho Kei ◽  
Ryszard Auksztulewicz ◽  
Jan W. Schnupp

AbstractMismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained by subtracting event-related potential (ERP) responses evoked by unexpected deviant stimuli from responses evoked by expected standard stimuli. While the MMN is thought to reflect an unexpected change in an ongoing, predictable stimulus, it is unknown whether MMN responses evoked by changes in different stimulus features have different magnitudes, latencies, and topographies. The present study aimed to investigate whether MMN responses differ depending on whether sudden stimulus change occur in pitch, duration, location or vowel identity respectively.To calculate ERPs to standard and deviant stimuli, EEG signals were recorded in normal-hearing participants (N=20; 13 males, 7 females) who listened to roving oddball sequences of artificial syllables. In the roving paradigm, any given stimulus is repeated several times to form a standard, and then suddenly replaced with a deviant stimulus which differs from the standard. Here, deviants differed from preceding standards along one of four features (pitch, duration, vowel or interaural level difference). The feature levels were individually chosen to match behavioral discrimination performance.We identified neural activity evoked by unexpected violations along all four acoustic dimensions. Evoked responses to deviant stimuli increased in amplitude relative to the responses to standard stimuli. A univariate (channel-by-channel) analysis yielded no significant differences between MMN responses following violations of different features. However, in a multivariate analysis (pooling information from multiple EEG channels), acoustic features could be decoded from the topography of mismatch responses, although at later latencies than those typical for MMN. These results support the notion that deviant feature detection may be subserved by a different process than general mismatch detection.

2021 ◽  
Vol 15 ◽  
Author(s):  
HyunJung An ◽  
Shing Ho Kei ◽  
Ryszard Auksztulewicz ◽  
Jan W. H. Schnupp

Mismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained by subtracting event-related potential (ERP) responses evoked by unexpected deviant stimuli from responses evoked by expected standard stimuli. While the MMN is thought to reflect an unexpected change in an ongoing, predictable stimulus, it is unknown whether MMN responses evoked by changes in different stimulus features have different magnitudes, latencies, and topographies. The present study aimed to investigate whether MMN responses differ depending on whether sudden stimulus change occur in pitch, duration, location or vowel identity, respectively. To calculate ERPs to standard and deviant stimuli, EEG signals were recorded in normal-hearing participants (N = 20; 13 males, 7 females) who listened to roving oddball sequences of artificial syllables. In the roving paradigm, any given stimulus is repeated several times to form a standard, and then suddenly replaced with a deviant stimulus which differs from the standard. Here, deviants differed from preceding standards along one of four features (pitch, duration, vowel or interaural level difference). The feature levels were individually chosen to match behavioral discrimination performance. We identified neural activity evoked by unexpected violations along all four acoustic dimensions. Evoked responses to deviant stimuli increased in amplitude relative to the responses to standard stimuli. A univariate (channel-by-channel) analysis yielded no significant differences between MMN responses following violations of different features. However, in a multivariate analysis (pooling information from multiple EEG channels), acoustic features could be decoded from the topography of mismatch responses, although at later latencies than those typical for MMN. These results support the notion that deviant feature detection may be subserved by a different process than general mismatch detection.


Gerontology ◽  
2018 ◽  
Vol 64 (4) ◽  
pp. 318-325 ◽  
Author(s):  
István Sulykos ◽  
Zsófia Anna Gaál ◽  
István  Czigler

Background: In comparison to controlled (attentional) processing, relatively little is known about the age-related changes of the earlier (preattentive) processes. An event-related potential (ERP) index of preattentive (automatic) visual processing, the visual mismatch negativity (vMMN) is a good candidate for analyzing age-related differences in the automatic processing of visual events. Objective: So far results concerning age-related changes in vMMN have been equivocal. Our aim was to develop a method resulting in a reliable vMMN in a paradigm short enough to use in the applied field. Methods: We investigated an older (mean age: 66.4 years, n = 15) and a younger (mean age: 22.4 years, n = 15) group of healthy women. ERPs were obtained for checkerboard onset patterns in a passive oddball condition (during which participants performed a tracking task). One of the checkerboards was frequent (standard; p = 0.8), and the other was rare (deviant; p = 0.2). Results: vMMN emerged over posterior locations in the latency range of 100–300 ms in both age groups. The amplitude of the earlier part of the vMMN was similar in the older and the younger participants, but latency was longer in the older group. The later part of the vMMN was slightly diminished in the elderly. Conclusion: Automatic detection of violated sequential regularities, reflected by the vMMN, emerged in the two age groups (earlier vMMN). However, detection of stimulus change, a preattentive visual process delayed in the elderly, and identification of the specific change was compromised in the older participants.


2002 ◽  
Vol 11 (1) ◽  
pp. 42-49
Author(s):  
Devin L. McCaslin ◽  
Lawrence L. Feth ◽  
Gary P. Jacobson ◽  
Pamela J. Mishler

This investigation was conducted to determine whether an exogenous event-related potential called the mismatch negativity (MMN) would change systematically in response to frequency-modulated signals with varying temporal properties. Both N1 and P2 waveforms were recorded for 50-ms frequency-modulated signals from normal hearing listeners. The standard stimuli for this investigation were continuous sweep tones with center frequencies of 1000 Hz that traversed a frequency range of 200 Hz in a single step. The rare stimuli were signals that traversed the same frequency range in two, four, six, or eight discrete steps. Results suggest that for the 10 participants, 1) the mean MMN peak-to-peak amplitude and mean area decreased significantly with decreases in step duration, 2) MMN area amplitude was the best indicator of psychophysical performance for the two magnitude measures, and 3) MMN onsets and peak latencies did not show either a significant increase or decrease in latency as step duration decreased.


2018 ◽  
Vol 49 (4) ◽  
pp. 238-247 ◽  
Author(s):  
Derek J. Fisher ◽  
Debra J. Campbell ◽  
Shelagh C. Abriel ◽  
Emma M. L. Ells ◽  
Erica D. Rudolph ◽  
...  

The mismatch negativity (MMN) is an EEG-derived event-related potential (ERP) elicited by any violation of a predicted auditory “rule,” regardless of whether one is attending to the stimuli and is thought to reflect updating of the stimulus context. Redirection of attention toward a rare, distracting stimulus event, however, can be measured by the subsequent P3a component of the P300. Chronic schizophrenia patients exhibit robust MMN deficits, as well as reductions in P3a amplitude. While, the substantial literature on the MMN in first-episode and early phase schizophrenia in this population reports reduced amplitudes, there also exist several contradictory studies. Conversely, P3a reduction in this population is relatively consistent, although the literature investigating this is small. The primary goal of this study was to contribute to our understanding of whether auditory change detection mechanisms are altered in early phase schizophrenia and, if so, under what conditions. Event-related potentials elicited by duration, frequency, gap, intensity, and location deviants (as elicited by the “optimal” multi-feature paradigm) were recorded in 14 early phase schizophrenia (EP) patients and 17 healthy controls (HCs). Electrical activity was recorded from 15 scalp electrodes. MMN/P3a amplitudes and latencies for each deviant were compared between groups and were correlated with clinical measures in EPs. There were no significant group differences for MMN amplitudes or latencies, though EPs did exhibit reduced P3a amplitudes to gap and duration deviants. Furthermore, PANSS (Positive and Negative Syndrome Scale) positive symptom scores were correlated with intensity MMN latencies and duration P3a amplitudes in EPs. These findings suggest that MMNs may not be as robustly reduced in early phase schizophrenia (relative to chronic illness), but that alterations may be more likely in patients with increased positive symptomatology. Furthermore, these findings offer further support to previous work suggesting that the understudied P3a may have good complementary utility as a marker of early cortical dysfunction in psychosis.


2011 ◽  
Vol 33 (1) ◽  
pp. 55-82 ◽  
Author(s):  
MICHAEL GROSVALD ◽  
DAVID CORINA

ABSTRACTIn this study we explore listeners' sensitivity to vowel to vowel (VV) coarticulation, using both event-related potential (ERP) and behavioral methodologies. The stimuli used were vowels “colored” by the coarticulatory influence of other vowels across one, three or five intervening segments. The paradigm used in the ERP portion of the study was intended to elicit the mismatch-negativity (MMN) component, a negative deflection typically seen at central midline scalp sites about 200 ms after the presentation of a “deviant” acoustic stimulus occurring among a train of “standard” acoustic stimuli. VV coarticulation at near and medium distances was associated with significant MMN-like effects, which however were not observed in response to the longest distance coarticulatory contrasts. Subjects' ERP results did not predict their performance on the behavioral task, which found evidence of listener sensitivity to even the furthest distance coarticulatory effects. Although the MMN has previously been shown to be sensitive to phonemic contrasts, this is the first study using ERP methodology to investigate the subphonemic processing associated with the perception of coarticulation.


Sign in / Sign up

Export Citation Format

Share Document