scholarly journals Overview of the SAMPL6 pKa Challenge: Evaluating small molecule microscopic and macroscopic pKa predictions

2020 ◽  
Author(s):  
Mehtap Işık ◽  
Ariën S. Rustenburg ◽  
Andrea Rizzi ◽  
M. R. Gunner ◽  
David L. Mobley ◽  
...  

AbstractThe prediction of acid dissociation constants (pKa) is a prerequisite for predicting many other properties of a small molecule, such as its protein-ligand binding affinity, distribution coefficient (log D), membrane permeability, and solubility. The prediction of each of these properties requires knowledge of the relevant protonation states and solution free energy penalties of each state. The SAMPL6 pKa Challenge was the first time that a separate challenge was conducted for evaluating pKa predictions as part of the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) exercises. This challenge was motivated by significant inaccuracies observed in prior physical property prediction challenges, such as the SAMPL5 log D Challenge, caused by protonation state and pKa prediction issues. The goal of the pKa challenge was to assess the performance of contemporary pKa prediction methods for drug-like molecules. The challenge set was composed of 24 small molecules that resembled fragments of kinase inhibitors, a number of which were multiprotic. Eleven research groups contributed blind predictions for a total of 37 pKa distinct prediction methods. In addition to blinded submissions, four widely used pKa prediction methods were included in the analysis as reference methods. Collecting both microscopic and macroscopic pKa predictions allowed in-depth evaluation of pKa prediction performance. This article highlights deficiencies of typical pKa prediction evaluation approaches when the distinction between microscopic and macroscopic pKas is ignored; in particular, we suggest more stringent evaluation criteria for microscopic and macroscopic pKa predictions guided by the available experimental data. Top-performing submissions for macroscopic pKa predictions achieved RMSE of 0.7-1.0 pKa units and included both quantum chemical and empirical approaches, where the total number of extra or missing macroscopic pKas predicted by these submissions were fewer than 8 for 24 molecules. A large number of submissions had RMSE spanning 1-3 pKa units. Molecules with sulfur-containing heterocycles or iodo and bromo groups were less accurately predicted on average considering all methods evaluated. For a subset of molecules, we utilized experimentally-determined microstates based on NMR to evaluate the dominant tautomer predictions for each macroscopic state. Prediction of dominant tautomers was a major source of error for microscopic pKa predictions, especially errors in charged tautomers. The degree of inaccuracy in pKa predictions observed in this challenge is detrimental to the protein-ligand binding affinity predictions due to errors in dominant protonation state predictions and the calculation of free energy corrections for multiple protonation states. Underestimation of ligand pKa by 1 unit can lead to errors in binding free energy errors up to 1.2 kcal/mol. The SAMPL6 pKa Challenge demonstrated the need for improving pKa prediction methods for drug-like molecules, especially for challenging moieties and multiprotic molecules.

2020 ◽  
Author(s):  
E. Prabhu Raman ◽  
Thomas J. Paul ◽  
Ryan L. Hayes ◽  
Charles L. Brooks III

<p>Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small molecule lead optimization. Relative free energy perturbation (FEP) approaches are one of the most widely utilized for this goal, but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to setup, execute, and analyze Multi-Site Lambda Dynamics (MSLD) calculations run on GPUs with CHARMm implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse dataset of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free energy landscape of any MSLD system is developed that enhances sampling and allows for efficient estimation of free energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than a hundred ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multi-site systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore chemical space around a lead compound, and thus are of utility in lead optimization.</p>


2020 ◽  
Author(s):  
Son Tung Ngo ◽  
Nguyen Minh Tam ◽  
Pham Minh Quan ◽  
Trung Hai Nguyen

COVID-19 pandemic has killed millions of people worldwide since its outbreak in Dec 2019. The pandemic is caused by the SARS-CoV-2 virus whose main protease (Mpro) is a promising drug target since it plays a key role in viral proliferation and replication. Currently, designing an effective therapy is an urgent task, which requires accurately estimating ligand-binding free energy to the SARS-CoV-2 Mpro. However, it should be noted that the accuracy of a free energy method probably depends on the protein target. A highly accurate approach for some targets may fail to produce a reasonable correlation with experiment when a novel enzyme is considered as a drug target. Therefore, in this context, the ligand-binding affinity to SARS-CoV-2 Mpro was calculated via various approaches. The Autodock Vina (Vina) and Autodock4 (AD4) packages were manipulated to preliminary investigate the ligand-binding affinity and pose to the SARS-CoV-2 Mpro. The binding free energy was then refined using the fast pulling of ligand (FPL), linear interaction energy (LIE), molecular mechanics-Poission Boltzmann surface area (MM-PBSA), and free energy perturbation (FEP) methods. The benchmark results indicated that for docking calculations, Vina is more accurate than AD4 and for free energy methods, FEP is the most accurate followed by LIE, FPL and MM-PBSA (FEP > LIE > FPL > MM-PBSA). Moreover, the binding mechanism was also revealed by atomistic simulations. The vdW interaction is the dominant factor. The residues <i>Thr25</i>, <i>Thr26</i>, <i>His41</i>, <i>Ser46</i>, <i>Asn142</i>, <i>Gly143</i>, <i>Cys145</i>, <i>Glu166</i>, and <i>Gln189</i> are essential elements affecting on the binding process. Furthermore, the <i>Ser46</i> and related residues probably are important elements affecting the enlarge/dwindle of the SARS-CoV-2 Mpro binding cleft. The benchmark probably guide for further investigations using computational approaches.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Trang Truc Nguyen ◽  
Man Hoang Viet ◽  
Mai Suan Li

The influence of water models SPC, SPC/E, TIP3P, and TIP4P on ligand binding affinity is examined by calculating the binding free energyΔGbindof oseltamivir carboxylate (Tamiflu) to the wild type of glycoprotein neuraminidase from the pandemic A/H5N1 virus.ΔGbindis estimated by the Molecular Mechanic-Poisson Boltzmann Surface Area method and all-atom simulations with different combinations of these aqueous models and four force fields AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L. It is shown that there is no correlation between the binding free energy and the water density in the binding pocket in CHARMM. However, for three remaining force fieldsΔGbinddecays with increase of water density. SPC/E provides the lowest binding free energy for any force field, while the water effect is the most pronounced in CHARMM. In agreement with the popular GROMACS recommendation, the binding score obtained by combinations of AMBER-TIP3P, OPLS-TIP4P, and GROMOS-SPC is the most relevant to the experiments. For wild-type neuraminidase we have found that SPC is more suitable for CHARMM than TIP3P recommended by GROMACS for studying ligand binding. However, our study for three of its mutants reveals that TIP3P is presumably the best choice for CHARMM.


Nanoscale ◽  
2020 ◽  
Vol 12 (19) ◽  
pp. 10737-10750 ◽  
Author(s):  
Kaifang Huang ◽  
Song Luo ◽  
Yalong Cong ◽  
Susu Zhong ◽  
John Z. H. Zhang ◽  
...  

Modifying the energy term and considering the entropic contribution by IE method significantly improve the accuracy of predicted binding free energy in MM/PBSA method.


2020 ◽  
Author(s):  
Son Tung Ngo ◽  
Nguyen Minh Tam ◽  
Pham Minh Quan ◽  
Trung Hai Nguyen

COVID-19 pandemic has killed millions of people worldwide since its outbreak in Dec 2019. The pandemic is caused by the SARS-CoV-2 virus whose main protease (Mpro) is a promising drug target since it plays a key role in viral proliferation and replication. Currently, designing an effective therapy is an urgent task, which requires accurately estimating ligand-binding free energy to the SARS-CoV-2 Mpro. However, it should be noted that the accuracy of a free energy method probably depends on the protein target. A highly accurate approach for some targets may fail to produce a reasonable correlation with experiment when a novel enzyme is considered as a drug target. Therefore, in this context, the ligand-binding affinity to SARS-CoV-2 Mpro was calculated via various approaches. The Autodock Vina (Vina) and Autodock4 (AD4) packages were manipulated to preliminary investigate the ligand-binding affinity and pose to the SARS-CoV-2 Mpro. The binding free energy was then refined using the fast pulling of ligand (FPL), linear interaction energy (LIE), molecular mechanics-Poission Boltzmann surface area (MM-PBSA), and free energy perturbation (FEP) methods. The benchmark results indicated that for docking calculations, Vina is more accurate than AD4 and for free energy methods, FEP is the most accurate followed by LIE, FPL and MM-PBSA (FEP > LIE ≈ FPL > MM-PBSA). Moreover, the binding mechanism was also revealed by atomistic simulations. The vdW interaction is the dominant factor. The residues <i>Thr26</i>, <i>His41</i>, <i>Ser46</i>, <i>Asn142</i>, <i>Gly143</i>, <i>Cys145</i>, <i>His164</i>, <i>Glu166</i>, and <i>Gln189</i> are essential elements affecting on the binding process. The benchmark probably guide for further investigations using computational approaches.


2020 ◽  
Author(s):  
E. Prabhu Raman ◽  
Thomas J. Paul ◽  
Ryan L. Hayes ◽  
Charles L. Brooks III

<p>Accurate predictions of changes to protein-ligand binding affinity in response to chemical modifications are of utility in small molecule lead optimization. Relative free energy perturbation (FEP) approaches are one of the most widely utilized for this goal, but involve significant computational cost, thus limiting their application to small sets of compounds. Lambda dynamics, also rigorously based on the principles of statistical mechanics, provides a more efficient alternative. In this paper, we describe the development of a workflow to setup, execute, and analyze Multi-Site Lambda Dynamics (MSLD) calculations run on GPUs with CHARMm implemented in BIOVIA Discovery Studio and Pipeline Pilot. The workflow establishes a framework for setting up simulation systems for exploratory screening of modifications to a lead compound, enabling the calculation of relative binding affinities of combinatorial libraries. To validate the workflow, a diverse dataset of congeneric ligands for seven proteins with experimental binding affinity data is examined. A protocol to automatically tailor fit biasing potentials iteratively to flatten the free energy landscape of any MSLD system is developed that enhances sampling and allows for efficient estimation of free energy differences. The protocol is first validated on a large number of ligand subsets that model diverse substituents, which shows accurate and reliable performance. The scalability of the workflow is also tested to screen more than a hundred ligands modeled in a single system, which also resulted in accurate predictions. With a cumulative sampling time of 150ns or less, the method results in average unsigned errors of under 1 kcal/mol in most cases for both small and large combinatorial libraries. For the multi-site systems examined, the method is estimated to be more than an order of magnitude more efficient than contemporary FEP applications. The results thus demonstrate the utility of the presented MSLD workflow to efficiently screen combinatorial libraries and explore chemical space around a lead compound, and thus are of utility in lead optimization.</p>


2020 ◽  
Author(s):  
Son Tung Ngo ◽  
Nguyen Minh Tam ◽  
Pham Minh Quan ◽  
Trung Hai Nguyen

COVID-19 pandemic has killed millions of people worldwide since its outbreak in Dec 2019. The pandemic is caused by the SARS-CoV-2 virus whose main protease (Mpro) is a promising drug target since it plays a key role in viral proliferation and replication. Currently, designing an effective therapy is an urgent task, which requires accurately estimating ligand-binding free energy to the SARS-CoV-2 Mpro. However, it should be noted that the accuracy of a free energy method probably depends on the protein target. A highly accurate approach for some targets may fail to produce a reasonable correlation with experiment when a novel enzyme is considered as a drug target. Therefore, in this context, the ligand-binding affinity to SARS-CoV-2 Mpro was calculated via various approaches. The Autodock Vina (Vina) and Autodock4 (AD4) packages were manipulated to preliminary investigate the ligand-binding affinity and pose to the SARS-CoV-2 Mpro. The binding free energy was then refined using the fast pulling of ligand (FPL), linear interaction energy (LIE), molecular mechanics-Poission Boltzmann surface area (MM-PBSA), and free energy perturbation (FEP) methods. The benchmark results indicated that for docking calculations, Vina is more accurate than AD4 and for free energy methods, FEP is the most accurate followed by LIE, FPL and MM-PBSA (FEP > LIE ≈ FPL > MM-PBSA). Moreover, the binding mechanism was also revealed by atomistic simulations. The vdW interaction is the dominant factor. The residues <i>Thr26</i>, <i>His41</i>, <i>Ser46</i>, <i>Asn142</i>, <i>Gly143</i>, <i>Cys145</i>, <i>His164</i>, <i>Glu166</i>, and <i>Gln189</i> are essential elements affecting on the binding process. The benchmark probably guide for further investigations using computational approaches.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zbigniew Dutkiewicz

AbstractDrug design is an expensive and time-consuming process. Any method that allows reducing the time the costs of the drug development project can have great practical value for the pharmaceutical industry. In structure-based drug design, affinity prediction methods are of great importance. The majority of methods used to predict binding free energy in protein-ligand complexes use molecular mechanics methods. However, many limitations of these methods in describing interactions exist. An attempt to go beyond these limits is the application of quantum-mechanical description for all or only part of the analyzed system. However, the extensive use of quantum mechanical (QM) approaches in drug discovery is still a demanding challenge. This chapter briefly reviews selected methods used to calculate protein-ligand binding affinity applied in virtual screening (VS), rescoring of docked poses, and lead optimization stage, including QM methods based on molecular simulations.


Author(s):  
Stefan Holderbach ◽  
Lukas Adam ◽  
Bhyravabhotla Jayaram ◽  
Rebecca Wade ◽  
Goutam Mukherjee

The virtual screening of large numbers of compounds against target protein binding sites has become an integral component of drug discovery workflows. This screening is often done by computationally docking ligands into a protein binding site of interest, but this has the drawback that a large number of poses must be evaluated to obtain accurate estimates of protein-ligand binding affinity. We here introduce a fast prefiltering method for ligand prioritization that is based on a set of machine learning models and uses simple pose-invariant physicochemical descriptors of the ligands and the protein binding pocket. Our method, Rapid Screening with Physicochemical Descriptors + machine learning (RASPD+), is trained on PDBbind data and achieves a regression performance better than for the original RASPD method and comparable to traditional scoring functions on a range of different test sets without the need for generating ligand poses. Additionally, we use RASPD+ to identify molecular features important for binding affinity and assess the ability of RASPD+ to enrich active molecules from decoys.


2019 ◽  
Author(s):  
Qingyi Yang ◽  
Woodrow W. Burchett ◽  
Gregory S. Steeno ◽  
David L. Mobley ◽  
Xinjun Hou

Predicting binding free energy of ligand-protein complexes has been a grand challenge in the field of computational chemistry since the early days of molecular modeling. Multiple computational methodologies exist to predict ligand binding affinities. Pathway-based Free Energy Perturbation (FEP), Thermodynamic Integration (TI) as well as Linear Interaction Energy (LIE), and Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PBSA/GBSA) have been applied to a variety of biologically relevant problems and achieved different levels of predictive accuracy. Recent advancements in computer hardware and simulation algorithms of molecular dynamics and Monte Carlo sampling, as well as improved general force field parameters, have made FEP a principal approach for calculating the free energy differences, especially when calculating the host-guest binding affinity differences upon chemical modification.<br><br>Since the FEP-calculated binding free energy difference, denoted ddGFEP only characterizes the difference in free energy between pairs of ligands or complexes, not the absolute binding free energy value of each individual host-guest system, denoted dG, we examine two rarely asked questions in FEP application:<br><br>1) Which values would be more appropriate as the prediction to assess the ligands prospectively: the calculated pairwise free energy differences, ddGFEP, or the estimated absolute binding energies, d^G, transformed from ddGFEP?<br>2) In the situation where only a limited number of ligand pairs can be calculated in FEP, can the perturbation pairs be optimally selected with respect to the reference ligand(s) to maximize the prediction precision?<br><br>These two questions underline the viability of an often-neglected assumption in pairwise comparisons: that the pairwise value is sufficient to make a quantitative and reliable characterization of an individual ligand's properties or activities. This implicit assumption would be true if there was no error in each pairwise calculation. Recently pair designs such as multiple pathways or cycle closure analyses provided calculation error estimation but did not address the statistical impact of the two questions above. The error impact is fully minimized by conducting an exhaustive study that obtains all NC2 = N(N-1)/2 pairs for a set N molecules; more if there is directionality (dGi,j != dGj,i). Obviously, that study design is impractical and unnecessary. Thus, we desire to collect the right amount of data that is 1) feasibly attainable, 2) topologically sufficient, and 3) mathematically synthesizable so that we can mitigate inherent calculation errors and have higher confidence in our conclusions.<br><br>The significance of above questions can be illustrated by a motivating example shown in Figure 1 and Table 1, which considers two different perturbation graph designs for 20 ligands with the same number of FEP perturbation pairs, 19, and the same reference, Ligand 1. These two designs reached different conclusions in rank ordering ligand potencies due to errors inherent in the FEP derived estimates. Based on design A, ligands 5, 7, 14, 15 would be selected as the best four (20%) picks since those d^G estimates are the most favorable. Design B would yield ligands 5, 12, 18, 19 as best for the same reason. Without knowing the true value, dGTrue of the other 19 ligands, we lack a prospective metric to assess which design could be more precise even though, retrospectively, we know that both designs had reasonably good agreement with the true values, as measured through correlation and error metrics. However, the top picks from neither design were consistent with the true top four ligands, which are ligands 7, 10, 12, 18. Yet, if all of the 20C2 =190 pairs could have been calculated as listed in the last column of Table 1, the best four ligands would have been correctly identified. Additionally, the other metrics included in Table 1 were significantly improved. However, as mentioned above, calculating all possible pairs, or even a significant fraction of all possible pairs, is unlikely in practice, especially when number of molecules are large. Given this restriction, is it possible to objectively determine whether design A or B will give more precise predictions?<br><br>In this report, we investigated the performance of the calculated ddGFEP values compared to the pairwise differences in least squares derived d^G estimates both analytically and through simulations. Based on our findings, we recommend applying weighted least squares to transforming ddGFEP values into d^G estimates. Second, we investigated the factors that contribute to the precision of the d^G estimates, such as the total number of computed pairs, the selection of computed pairs, and the uncertainty in the computed ddGFEP values. The mean squared error, denoted MSE and Spearman's rank correlation, are used as performance metrics.<br><br>To illustrate, we demonstrated how the structural similarity can be included in design and its potential impact on prediction precision. As in the majority of reported FEP studies on binding affinity prediction, the ddGFEP pairs were selected based on chemical structure similarity. Pairs with small chemical differences are assumed to be more likely to have smaller errors in ddGFEP calculation. Together using the constructed mathematic system and literature examples, we demonstrate that some of pair-selection schemes (designs) are better than the others. To minimize the prediction uncertainty, it is recommended to wisely select design optimality criterion to suit<br>practical applications accordingly.<br>


Sign in / Sign up

Export Citation Format

Share Document