scholarly journals Targeted modulation of protein liquid-liquid phase separation by evolution of amino-acid sequence

2020 ◽  
Author(s):  
Simon M. Lichtinger ◽  
Adiran Garaizar ◽  
Rosana Collepardo-Guevara ◽  
Aleks Reinhardt

AbstractRationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid-liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose an innovative computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We apply it to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction. We find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence: the critical temperature can be enhanced by increasing the frequency of hydrophobic and aromatic residues, by changing the charge patterning, or by a combination of both. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the composition of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.

2021 ◽  
Vol 17 (8) ◽  
pp. e1009328
Author(s):  
Simon M. Lichtinger ◽  
Adiran Garaizar ◽  
Rosana Collepardo-Guevara ◽  
Aleks Reinhardt

Rationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid–liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose a computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We validate the predicted critical solution temperatures of the mutated sequences with ABSINTH, a more accurate all-atom model. We apply the algorithm to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction, and we find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the make-up of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4705
Author(s):  
Adiran Garaizar ◽  
Ignacio Sanchez-Burgos ◽  
Rosana Collepardo-Guevara ◽  
Jorge R. Espinosa

Proteins containing intrinsically disordered regions (IDRs) are ubiquitous within biomolecular condensates, which are liquid-like compartments within cells formed through liquid–liquid phase separation (LLPS). The sequence of amino acids of a protein encodes its phase behaviour, not only by establishing the patterning and chemical nature (e.g., hydrophobic, polar, charged) of the various binding sites that facilitate multivalent interactions, but also by dictating the protein conformational dynamics. Besides behaving as random coils, IDRs can exhibit a wide-range of structural behaviours, including conformational switching, where they transition between alternate conformational ensembles. Using Molecular Dynamics simulations of a minimal coarse-grained model for IDRs, we show that the role of protein conformation has a non-trivial effect in the liquid–liquid phase behaviour of IDRs. When an IDR transitions to a conformational ensemble enriched in disordered extended states, LLPS is enhanced. In contrast, IDRs that switch to ensembles that preferentially sample more compact and structured states show inhibited LLPS. This occurs because extended and disordered protein conformations facilitate LLPS-stabilising multivalent protein–protein interactions by reducing steric hindrance; thereby, such conformations maximize the molecular connectivity of the condensed liquid network. Extended protein configurations promote phase separation regardless of whether LLPS is driven by homotypic and/or heterotypic protein–protein interactions. This study sheds light on the link between the dynamic conformational plasticity of IDRs and their liquid–liquid phase behaviour.


2019 ◽  
Author(s):  
Antonia Statt ◽  
Helena Casademunt ◽  
Clifford P. Brangwynne ◽  
Athanassios Z. Panagiotopoulos

Phase separation of intrinsically disordered proteins is important for the formation of membraneless organelles, or biomolecular condensates, which play key roles in the regulation of biochemical processes within cells. In this work, we investigated the phase separation of different sequences of a coarse-grained model for intrinsically disordered proteins and discovered a surprisingly rich phase behavior. We studied both the fraction of total hydrophobic parts and the distribution of hydrophobic parts. Not surprisingly, sequences with larger hydrophobic fractions showed conventional liquid-liquid phase separation. The location of the critical point was systematically influenced by the terminal beads of the sequence, due to changes in interfacial composition and tension. For sequences with lower hydrophobicity, we observed not only conventional liquid-liquid phase separation, but also reentrant phase behavior, in which the liquid phase density decreases at lower temperatures. For some sequences, we observed formation of open phases consisting of aggregates, rather than a normal liquid. These aggregates had overall lower densities than the conventional liquid phases, and exhibited complex geometries with large interconnected string-like or membrane-like clusters. Our findings suggest that minor alterations in the ordering of residues may lead to large changes in the phase behavior of the protein, a fact of significant potential relevance for biology.


2019 ◽  
Author(s):  
Julian C. Shillcock ◽  
Maelick Brochut ◽  
Etienne Chénais ◽  
John H. Ipsen

ABSTRACTPhase separation of immiscible fluids is a common phenomenon in polymer chemistry, and is recognized as an important mechanism by which cells compartmentalize their biochemical reactions. Biomolecular condensates are condensed fluid droplets in cells that form by liquid-liquid phase separation of intrinsically-disordered proteins. They have a wide range of functions and are associated with chronic neurodegenerative diseases in which they become pathologically rigid. Intrinsically-disordered proteins are conformationally flexible and possess multiple, distributed binding sites for each other or for RNA. However, it remains unclear how their material properties depend on the molecular structure of the proteins. Here we use coarse-grained simulations to explore the phase behavior and structure of a model biomolecular condensate composed of semi-flexible polymers with attractive end-caps in a good solvent. Although highly simplified, the model contains the minimal molecular features that are sufficient to observe liquid-liquid phase separation of soluble polymers. The polymers condense into a porous, three-dimensional network in which their end-caps reversibly bind at junctions. The spatial separation of connected junctions scales with the polymer backbone length as a self-avoiding random walk over a wide range of concentration with a weak affinity-dependent prefactor. By contrast, the average number of polymers that meet at the junctions depends strongly on the end-cap affinity but only weakly on the polymer length. The regularity and porosity of the condensed network suggests a mechanism for cells to regulate biomolecular condensates. Interaction sites along a protein may be turned on or off to modulate the condensate’s porosity and tune the diffusion and interaction of additional proteins.


2021 ◽  
Author(s):  
Jun Gao ◽  
Zhaofeng Gao ◽  
Andrea A. Putnam ◽  
Alicia K. Byrd ◽  
Sarah L. Venus ◽  
...  

G-quadruplex (G4) DNA inhibits RNA unwinding activity but promotes liquid–liquid phase separation of the DEAD-box helicase Ded1p in vitro and in cells. This highlights multifaceted effects of G4DNA on an enzyme with intrinsically disordered domains.


2020 ◽  
Vol 22 (34) ◽  
pp. 19368-19375 ◽  
Author(s):  
Milan Kumar Hazra ◽  
Yaakov Levy

The charge pattern of intrinsically disordered proteins affects the dynamics and internal diffusion of their condensate formed via liquid–liquid phase separation.


Sign in / Sign up

Export Citation Format

Share Document