scholarly journals Non-canonical Activation of Human Group 2 Innate Lymphoid Cells by TLR4 Signaling

2020 ◽  
Author(s):  
Li She ◽  
Hamad H. Alanazi ◽  
Jingwei Wang ◽  
Daniel P. Chupp ◽  
Yijiang Xu ◽  
...  

AbstractGroup 2 innate lymphoid cells (ILC2) are emerging as a critical player in type 2 immunity at barrier sites in response to microbial infections and allergen exposures. Although their classical activators are known to be host epithelial-derived alarmin cytokines IL-33, IL-25 or TSLP, it remains elusive whether ILC2 cells can be activated by directly sensing microbial ligands via pattern-recognition receptors such as toll-like receptors (TLRs). Here we report that toll-like receptor 4 (TLR4) is a potent activating receptor of human ILC2. We found that among many microbial ligands examined, lipopolysaccharides (LPS) from multiple species of Gram-negative bacteria, was found to potently stimulate human, but not murine ILC2, to proliferate and produce massive amounts of type 2 effector cytokines IL-4, IL-5, and IL-13. LPS-activated ILC2 also had greatly enhanced the CD40 ligand (CD154) expression and were able to promote the proliferation and antibody production of human B cells in culture. In a humanized mouse model, LPS activated the adoptively transferred human ILC2 in mouse lungs. Both NF-kB and JAK pathways, but not the IL-33-ST2 pathway, were required for LPS to activate human ILC2. RNA-seq data further revealed that LPS induced a large set of genes overlapped significantly with those induced by IL-33. Collectively, these findings support a non-classical mode of activating human ILC2 cells via the LPS-TLR4 signaling axis. Thus, targeting TLR4 signaling pathway might be developed as a new approach by modulating ILC2 activation in treating various type 2 immunity-associated diseases.

2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Noe Rodriguez-Rodriguez ◽  
Mayuri Gogoi ◽  
Andrew N.J. McKenzie

Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then disseminating cytokine cues to elicit effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 559 ◽  
pp. 135-140
Author(s):  
Keisuke Matsubara ◽  
Kazufumi Kunimura ◽  
Nana Yamane ◽  
Ryosuke Aihara ◽  
Tetsuya Sakurai ◽  
...  

Immunity ◽  
2018 ◽  
Vol 48 (6) ◽  
pp. 1195-1207.e6 ◽  
Author(s):  
Timotheus Y.F. Halim ◽  
Batika M.J. Rana ◽  
Jennifer A. Walker ◽  
Bernhard Kerscher ◽  
Martin D. Knolle ◽  
...  

Immunity ◽  
2014 ◽  
Vol 41 (2) ◽  
pp. 283-295 ◽  
Author(s):  
Christopher J. Oliphant ◽  
You Yi Hwang ◽  
Jennifer A. Walker ◽  
Maryam Salimi ◽  
See Heng Wong ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Rong Li ◽  
Xiao-xia Jiang ◽  
Lin-fang Zhang ◽  
Xiao-ming Liu ◽  
Ting-zi Hu ◽  
...  

H. pylori induces a complicated local and systematic immune response and contributes to the carcinogenesis of gastric cancer. A primary type 1 immune response is evoked by H. pylori since its occurrence. However, it is not unusual that an inhibitory immunity is dominant in H. pylori-associated diseases, which are promoted by the formation of immunosuppressive microenvironment. But whether group 2 innate lymphoid cells (ILC2s) plays a critical role in H. pylori-induced skewed type 2 immunity is still unclear. In the present study, firstly, we confirmed that type 1 immunity was inhibited and type 2 immunity were undisturbed or promoted after H. pylori infection in vitro and in vivo. Secondly, GATA-3 was firstly found to be increased in the interstitial lymphocytes from H. pylori-associated gastric cancer, among them, Lin−GATA-3+ cells and Lin+GATA-3+ cells were also found to be enhanced, which indicated an important role for ILC2s in H. pylori infection. More importantly, ILC2s were found to be increased after H. pylori infection in clinical patients and animal models. In conclusion, our results indicated that ILC2-mediated innate immune response might play a potential role in dominant type 2 phenotype and immunosuppressive microenvironment in H. pylori infection.


2015 ◽  
Vol 212 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Yong Yu ◽  
Cui Wang ◽  
Simon Clare ◽  
Juexuan Wang ◽  
Song-Choon Lee ◽  
...  

Group 2 innate lymphoid cells (ILCs), or ILC2s, are a subset of recently identified ILCs, which play important roles in innate immunity by producing type 2 effector cytokines. Several transcription factors have been found to have critical functions in the development of both ILC2s and T cells. We report here that Bcl11b, a transcription factor essential in T cell lineage commitment and maintenance, is specifically expressed in progenitors committed to the ILC2 lineage and is required for ILC2 development. The Bcl11b gene is expressed in ∼28% of ILC progenitors (ILCPs; common helper innate lymphoid progenitors or ILCPs expressing either ID2 or promyelocytic leukemia zinc finger, respectively). Both in vitro and in vivo, these Bcl11b-expressing early ILCPs generate only ILC2s. Inactivation of Bcl11b causes a complete loss of ILC2 development from hematopoietic progenitors, which is confirmed upon immune challenge with either papain administration or influenza virus infection.


Sign in / Sign up

Export Citation Format

Share Document