scholarly journals Efficacy of broflanilide (VECTRON™ T500), a new meta-diamide insecticide, for indoor residual spraying against pyrethroid-resistant malaria vectors

2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. A more diversified portfolio of IRS insecticides is required; insecticides with new chemistries which can provide improved and prolonged control of insecticide-resistant vector populations are urgently needed. Broflanilide is a newly discovered insecticide being considered for malaria vector control. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON™ T500) for IRS on mud and cement wall substrates in WHO laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic® 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, mortality of susceptible and pyrethroid-resistant A. gambiae s.l. with broflanilide WP treated substrates was >80% for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant A. gambiae s.l. entering treated experimental huts in Covè, Benin was 57%-66% with broflanilide WP and did not differ significantly from pirimiphos-methyl CS (57-66% vs. 56%, P>0.05). Mosquito mortality did not differ between the two application rates and local wall substrate-types tested (P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on broflanilide WP treated hut walls remained >80% for both susceptible and resistant strains of A. gambiae s.l.. Broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and would thus be a crucial addition to the current portfolio of IRS insecticides.One Sentence SummaryVECTRON™ T500, a new wettable powder formulation of broflanilide developed for indoor residual spraying, showed high and prolonged activity against wild pyrethroid-resistant malaria vectors, on local wall substrates, in laboratory bioassays and experimental household settings in Benin.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. Insecticides with new chemistries are urgently needed. Broflanilide is a newly discovered insecticide under consideration. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON T500) for IRS on mud and cement wall substrates in laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, broflanilide WP-treated substrates killed > 80% of susceptible and pyrethroid-resistant An. gambiae sl for 6–14 months. At application rates of 100 mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant An. gambiae sl entering experimental huts in Covè, Benin treated with VECTRON T500 was similar to pirimiphos-methyl CS (57–66% vs. 56%, P > 0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on VECTRON T500 treated hut walls remained > 80%. IRS with broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and could thus be a crucial addition to the current portfolio of IRS insecticides.


2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

Abstract The rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. Insecticides with new chemistries are urgently needed. Broflanilide is a newly discovered insecticide under consideration. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON T500) for IRS on mud and cement wall substrates in laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, broflanilide WP treated substrates killed >80% susceptible and pyrethroid-resistant An. gambiae sl for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant An. gambiae sl entering experimental huts in Covè, Benin treated with VECTRON T500 was similar to pirimiphos-methyl CS (57%-66% vs. 56%, P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on VECTRON T500 treated hut walls remained >80%. IRS with broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and could thus be a crucial addition to the current portfolio of IRS insecticides.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Charles Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract Background Vector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk. Methods WHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. Results Annual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n = 4,403 IRS sites, 58%, n = 2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto in unsprayed sites (20.4%, n = 858) than in sprayed sites (7.9%, n = 595) and fewer Anopheles parensis (2%, n = 85 unsprayed, 7.8%, n = 591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10–12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI 1.4–2.9) in unsprayed sites compared to 0.8% (95% CI 0.5–1.3) in sprayed sites (p = 0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. Conclusion This study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


2019 ◽  
Author(s):  
D.D Soma ◽  
B Zogo ◽  
P Taconet ◽  
A Somé ◽  
S Coulibaly ◽  
...  

AbstractBackgroundTo sustain the efficacy of malaria vector control, the World Health Organization (WHO) recommends the combination of effective tools. Before designing and implementing additional strategies in any setting, it is critical to monitor or predict when and where transmission occurs. However, to date, very few studies have quantified the behavioural interactions between humans and Anopheles vectors. Here, we characterized residual transmission in a rural area of Burkina Faso where long lasting insecticidal nets (LLIN) are widely used.MethodsWe analysed data on both human and malaria vectors behaviours from 27 villages to measure hourly human exposure to vector bites in dry and rainy seasons using mathematical models. We estimated the protective efficacy of LLINs and characterised where (indoors vs. outdoors) and when both LLIN users and non-users were exposed to vector bites.ResultsThe percentage of the population who declared sleeping under a LLIN the previous night was very high regardless of the season, with an average LLIN use ranging from 92.43% to 99.89%. The use of LLIN provided > 80% protection against exposure to vector bites. The proportion of exposure for LLIN users was 29-57% after 05:00 and 0.05-12 % before 20:00. More than 80% of exposure occurred indoors for LLIN users and the estimate reached 90% for children under five years old in the dry cold season.ConclusionsThis study supports the current use of LLIN as a primary malaria vector control tool. It also emphasises the need to complement LLIN with indoor-implemented measures such as indoor residual spraying (IRS) and/or house improvement to effectively combat malaria in the rural area of Diébougou. Furthermore, malaria elimination programmes would also require strategies that target outdoor biting vectors to be successful in the area.


2020 ◽  
Author(s):  
Charles Elias Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract BackgroundVector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk.MethodsWHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture potentially resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. ResultsAnnual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n=4,403 IRS sites, 58%, n=2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto (s.l) in unsprayed sites (20.4%, n=858) than in sprayed sites (7.9%, n=595) and fewer Anopheles parensis (2%, n=85 unsprayed, 7.8%, n=591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10-12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI: 1.4-2.9) in unsprayed sites compared to 0.8% (95% CI: 0.5-1.3) in sprayed sites (p=0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. ConclusionThis study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Guofa Zhou ◽  
Eugenia Lo ◽  
Andrew K. Githeko ◽  
Yaw A. Afrane ◽  
Guiyun Yan

AbstractThe issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the development and adoption of viable alternative vector control methods. Larval source management is one of the core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formulation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, resistance development, and impact on non-target organisms when integrating with other malaria vector control measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and outdoor transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.


PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0224718 ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Fred Amimo ◽  
Jackline Kosgei ◽  
Stephen Munga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document