cone bioassay
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 12)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Sokchan Lorn ◽  
Krajana Tainchum ◽  
Pitunart Nusen ◽  
Anchana Sumarnrote ◽  
Theeraphap Chareonviriyaphap

The susceptibility to six pyrethroid insecticides (permethrin, deltamethrin, alpha-cypermethrin, cypermethrin, lambda-cyhalothrin and bifenthrin), each at the recommended concentration, was evaluated for the two stable fly species Stomoxys calcitrans (Linnaeus) and Stomoxys indicus Picard, through tarsal contact using a World Health Organization (WHO) cone bioassay procedure. The field populations of stable flies were collected from three study sites (Songkhla, Phattalung and Satun provinces) in Thailand. The stable flies were exposed to insecticide-treated filter paper for 30 min and their knockdown counts at 30 min and 60 min and mortality counts at 12 hr and 24 hr were recorded. The S. calcitrans and S. indicus in Songkhla and Phattalung populations were moderately susceptible to pyrethroids for 24-hr mortality. Nonetheless, the Satun population of S. indicus was completely susceptible to permethrin with 100% mortality and the lowest susceptible to deltamethrin and bifenthrin. The results indicate a generally low susceptibility of stable flies to pyrethroids in the southern provinces of Thailand.


2021 ◽  
Vol 53 (03) ◽  
pp. 33-50
Author(s):  
RK Singh ◽  

Background and Objective: The current study was undertaken to determine insecticide susceptibility of malaria vectors in various villages of high malaria endemic PHCs of Gadchiroli district of Maharashtra. Methods: Adult malaria vectors were collected from the human dwellings/ cattle sheds of 156 villages of 18 malaria endemic PHCs. Susceptibility tests were carried out for different insecticides against An. culicifacies and An. fluviatilis mosquitoes as per the World Health Organization (WHO) procedure. Cone bioassays were also done to assess the quality and efficacy of indoor residual spray. Results:An. fluviatilis could be collected from 23 villages only and all the populations were fully susceptible to synthetic pyrethroid (deltamethrin) while being tolerant to organophosphorous (malathion). Susceptibility of An. culicifacies from 156 villages indicated that only 3 populations of An. culicifacies were resistant to deltamethrin while 57 populations were fully susceptible and other 96 populations were tolerant to deltamethrin. Resistance was recorded in 25 populations of An. culicifacies against malathion and 30 populations were tolerant to malathion insecticide. Remaining populations of An. fluviatilis and An. culicifacies were highly resistant to organochlorine. Results of cone bioassay revealed the mortality ranged from 32.5-51.1% on cemented and 27.5-43.3% on the mud wall sprayed with lambda cyhalothrin. Conclusion: The current study indicates that resistance has developed to synthetic pyrethroids in the major malaria vector An. culicifacies. Therefore, there is an urgent need for the evaluation of new insecticide molecules for better control of malaria vectors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. Insecticides with new chemistries are urgently needed. Broflanilide is a newly discovered insecticide under consideration. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON T500) for IRS on mud and cement wall substrates in laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, broflanilide WP-treated substrates killed > 80% of susceptible and pyrethroid-resistant An. gambiae sl for 6–14 months. At application rates of 100 mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant An. gambiae sl entering experimental huts in Covè, Benin treated with VECTRON T500 was similar to pirimiphos-methyl CS (57–66% vs. 56%, P > 0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on VECTRON T500 treated hut walls remained > 80%. IRS with broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and could thus be a crucial addition to the current portfolio of IRS insecticides.


Parasite ◽  
2021 ◽  
Vol 28 ◽  
pp. 8
Author(s):  
Roland Bamou ◽  
Edmond Kopya ◽  
Leslie Diane Nkahe ◽  
Benjamin D. Menze ◽  
Parfait Awono-Ambene ◽  
...  

In Cameroon, pyrethroid-only long-lasting insecticidal nets (LLINs) are still largely used for malaria control. The present study assessed the efficacy of such LLINs against a multiple-resistant population of the major malaria vector, Anopheles coluzzii, in the city of Yaoundé via a cone bioassay and release-recapture experimental hut trial. Susceptibility of field mosquitoes in Yaoundé to pyrethroids, DDT, carbamates and organophosphate insecticides was investigated using World Health Organization (WHO) bioassay tube tests. Mechanisms of insecticide resistance were characterised molecularly. Efficacy of unwashed PermaNet® 2.0 was evaluated against untreated control nets using a resistant colonised strain of An. coluzzii. Mortality, exophily and blood feeding inhibition were estimated. Field collected An. coluzzii displayed high resistance with mortality rates of 3.5% for propoxur (0.1%), 4.16% for DDT (4%), 26.9% for permethrin (0.75%), 50.8% for deltamethrin (0.05%), and 80% for bendiocarb (0.1%). High frequency of the 1014F west-Africa kdr allele was recorded in addition to the overexpression of several detoxification genes, such as Cyp6P3, Cyp6M2, Cyp9K1, Cyp6P4 Cyp6Z1 and GSTe2. A low mortality rate (23.2%) and high blood feeding inhibition rate (65%) were observed when resistant An. coluzzii were exposed to unwashed PermaNet® 2.0 net compared to control untreated net (p < 0.001). Furthermore, low personal protection (52.4%) was observed with the resistant strain, indicating reduction of efficacy. The study highlights the loss of efficacy of pyrethroid-only nets against mosquitoes exhibiting high insecticide resistance and suggests a switch to new generation bed nets to improve control of malaria vector populations in Yaoundé.


2021 ◽  
Vol 15 ◽  
pp. 117863022097473
Author(s):  
Brhane Gebremariam ◽  
Wondwosen Birke ◽  
Wuhib Zeine ◽  
Argaw Ambelu ◽  
Delenasaw Yewhalaw

Background: Long-Lasting Insecticidal Nets (LLINs) efficacy could be compromised due to a lot of influences together with user compliance and vector population insecticide resistance status. Thus, this study was to assess the biological efficacy of DuraNet® with the help of the World Health Organization cone bioassay and field experimental hut. Methods: A laboratory and a semi-field conditions experimental huts against Anopheles Mosquitoes were conducted in southwestern Ethiopia from September 2015 to January 2016. The bio efficacy of DuraNet® was evaluated using the WHO cone bioassay test and then its field efficacy was evaluated using experimental huts against the malaria vector population. Results: World Health Organization cone bioassay tests against pyrethroid-resistant An. arabiensis led to mean percent mortality and knockdown of 78% and 93%, respectively. Washing of DuraNet® successively reduced its efficacy from 93% knockdown (0 wash) to 45% knockdown (20 washes). Similarly, mean mortality decreased from 84% (0 wash) to 47% (20 washes). A total of 1575 female mosquitoes were collected over 40 nights out of which 1373(87.8%) were An. gambiae s.l., 116 (7.4%) were Anopheles coustani and 107 (6.8%) were An. pharoensis. The mean blood-feeding rate was significantly lower ( P < .001) in hut containing unwashed DuraNet® when compared to hut containing untreated DuraNet®. The mean mortality rate was significantly higher ( P < .001) in hut containing DuraNet® when compared to hut containing untreated DuraNet®. Unwashed DuraNet® showed the highest personal protection 88.7% and 100% against An. Arabiensis and An. pharoensis, respectively. Conclusion: Both DuraNet® and PermaNet 2.0 moderate efficacy against a pyrethroid-resistant population of An. arabiensis from Ethiopia. The bio efficacy of DuraNet® was found below the WHO recommendation. Therefore, the real impact of the observed insecticide resistance against DuraNet® to be further studied under phase-III trials, the need for new alternative vector control tools remains critical.


2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

Abstract The rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. Insecticides with new chemistries are urgently needed. Broflanilide is a newly discovered insecticide under consideration. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON T500) for IRS on mud and cement wall substrates in laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, broflanilide WP treated substrates killed >80% susceptible and pyrethroid-resistant An. gambiae sl for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant An. gambiae sl entering experimental huts in Covè, Benin treated with VECTRON T500 was similar to pirimiphos-methyl CS (57%-66% vs. 56%, P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on VECTRON T500 treated hut walls remained >80%. IRS with broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and could thus be a crucial addition to the current portfolio of IRS insecticides.


Author(s):  
Aristide Sawdetuo Hien ◽  
Dieudonné Diloma Soma ◽  
Fabrice Anyirekun Somé ◽  
Moussa Namountougou ◽  
Serge Bèwadéyir Poda ◽  
...  

Abstract Indoor residual spraying (IRS) was applied in addition to the use of long-lasting insecticidal nets in the South West in Burkina Faso, where Anopheles gambiae s.l. the major malaria vector was resistant to pyrethroids. This study was designed to evaluate the efficacy and residual life of bendiocarb (active ingredient) used for spraying on different wall surfaces (mud and cement). Cone bioassays were done monthly with the susceptible An. gambiae ‘Kisumu’ strain and the local wild populations to determine the duration for which insecticide was effective in killing mosquitoes. Cone bioassay data showed low efficacy and short persistence of bendiocarb applied on mud and cement walls, lasting 2 mo with the susceptible insectary strain and less than 1 mo with An. gambiae wild populations. In addition, WHO tube assays confirmed resistance of An. gambiae wild populations to 0.1% bendiocarb with mortality rates less than 80% in both study sites (sprayed and unsprayed sites). The pilot study of IRS with bendiocarb showed that the residual efficacy of bendiocarb was very short, and resistance to bendiocarb was confirmed in wild populations of An. gambiae s.l. Therefore, Ficam 80 WP was not suitable for IRS in this area due to the short residual duration related mainly to vectors resistance to bendiocarb. While waiting for innovative malaria control tool, alternative insecticide (organophosphate or neonicotinoid classes) or combinations of insecticides have to be used for insecticide resistance management in Burkina Faso.


2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. A more diversified portfolio of IRS insecticides is required; insecticides with new chemistries which can provide improved and prolonged control of insecticide-resistant vector populations are urgently needed. Broflanilide is a newly discovered insecticide being considered for malaria vector control. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON™ T500) for IRS on mud and cement wall substrates in WHO laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic® 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, mortality of susceptible and pyrethroid-resistant A. gambiae s.l. with broflanilide WP treated substrates was >80% for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant A. gambiae s.l. entering treated experimental huts in Covè, Benin was 57%-66% with broflanilide WP and did not differ significantly from pirimiphos-methyl CS (57-66% vs. 56%, P>0.05). Mosquito mortality did not differ between the two application rates and local wall substrate-types tested (P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on broflanilide WP treated hut walls remained >80% for both susceptible and resistant strains of A. gambiae s.l.. Broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and would thus be a crucial addition to the current portfolio of IRS insecticides.One Sentence SummaryVECTRON™ T500, a new wettable powder formulation of broflanilide developed for indoor residual spraying, showed high and prolonged activity against wild pyrethroid-resistant malaria vectors, on local wall substrates, in laboratory bioassays and experimental household settings in Benin.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Augustin Fongnikin ◽  
Nadia Houeto ◽  
Abel Agbevo ◽  
Abibath Odjo ◽  
Thomas Syme ◽  
...  

Abstract Background A new generation of IRS insecticides which can provide improved and prolonged control of pyrethroid-resistant malaria vector populations are being developed. Fludora® Fusion is a new IRS insecticide containing a mixture of deltamethrin and clothianidin, a neonicotinoid. Methods The efficacy of Fludora® Fusion IRS was evaluated over 11–12 months on concrete and mud substrates in laboratory bioassays and experimental huts against wild free-flying pyrethroid-resistant Anopheles gambiae (sensu lato) in Cové, Benin. A comparison was made with the two active ingredients of the mixture; clothianidin and deltamethrin, applied alone. CDC bottle bioassays were also performed to investigate resistance to clothianidin in the wild vector population. Results Fludora® Fusion induced > 80% laboratory cone bioassay mortality with both susceptible and pyrethroid-resistant An. gambiae (s.l.) for 7–9 months on concrete block substrates and 12 months on mud block substrates. The vector population at the experimental hut site was fully susceptible to clothianidin in CDC bottle bioassays. Overall mortality rates of wild free-flying pyrethroid-resistant An. gambiae (s.l.) entering the experimental huts during the 11-month trial were < 15% with deltamethrin and significantly higher with Fludora® Fusion (69–71%) and clothianidin alone (72–78%). Initial high experimental hut mortality rates with Fludora® Fusion (> 80%) only declined by 50% after 8 months. Monthly in situ wall cone bioassay mortality of susceptible mosquitoes was > 80% for 9–12 months with Fludora® Fusion and clothianidin alone. Fludora® Fusion induced significantly higher levels of early exiting of mosquitoes compared to clothianidin alone (55–60% vs 37–38%, P < 0.05). Conclusions Indoor residual spraying with Fludora® Fusion induced high and prolonged mortality of wild pyrethroid-resistant malaria vectors for 7–10 months mostly due to the clothianidin component and substantial early exiting of mosquitoes from treated huts due to the pyrethroid component. Fludora® Fusion is an important addition to the current portfolio of IRS insecticides with the potential to significantly reduce transmission of malaria by pyrethroid-resistant mosquito vectors.


2020 ◽  
Author(s):  
Charles Elias Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract Background Vector control through long lasting insecticidal nets and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic 300CS) was sprayed in regions of Kagera, Geita, Mwanza and Mara. Methods WHO Cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (un-baited) as a proxy measure for indoor and outdoor biting rate and time of biting. A sub-sample of Anopheles were tested by PCR to determine species identity and ELISA for sporozoite rate. Results Annual IRS with Actellic® CS between 2015 and 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly An. arabiensis (58.1%, n=4,403 IRS sites, 58%, n=2,441 unsprayed sites). There was a greater proportion of An. funestus s.s. in unsprayed sites (20.4%, n=858) than sprayed sites (7.9%, n=595) and fewer An. parensis (2%, n=85 unsprayed, 7.8%, n=591 sprayed). Biting peaks of An. gambiae s.l. followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e. 10-12 months after IRS. Based on these data and malaria case data, the timing of IRS was changed to November in Kagera and Geita Regions in 2018. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI: 1.4-2.9) in unsprayed sites compared to 0.8% (95% CI: 0.5-1.3) in sprayed sites (p=0.003). Sporozoite rates also appeared to be lower for An. funestus collected in sprayed sites. Conclusion IRS appeared to have substantial impact on malaria transmission, with sporozoite rate in An. arabiensis being 59% lower in sprayed sites than in unsprayed sites in 2017.


Sign in / Sign up

Export Citation Format

Share Document