scholarly journals Quantifying biofilm propagation on chemically modified surfaces

2020 ◽  
Author(s):  
Michelle C. Halsted ◽  
Amber N. Bible ◽  
Jennifer L. Morrell-Falvey ◽  
Scott T. Retterer

AbstractConditions affecting biofilm formation differ among bacterial species and this presents a challenge to studying biofilms in the lab. This work leverages functionalized silanes to control surface chemistry in the study of early biofilm propagation, quantified with a semi-automated image processing algorithm. These methods support the study of Pantoea sp. YR343, a gram-negative bacterium isolated from the poplar rhizosphere. We found that Pantoea sp. YR343 does not readily attach to hydrophilic surfaces but will form biofilms with a “honeycomb” morphology on hydrophobic surfaces. Our image processing algorithm described here was used to quantify this honeycomb morphology over time and displayed a logarithmic behavior in the propagation of the honeycomb biofilm. This methodology was repeated with a flagella-deficient fliR mutant of Pantoea sp. YR343 which resulted in reduced surface attachment. Quantifiable differences between Pantoea WT and ΔfliR biofilm morphologies were captured by the image processing algorithm, further demonstrating the insight gained from these methods.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Soo Hyun Park ◽  
Sang Ha Noh ◽  
Michael J. McCarthy ◽  
Seong Min Kim

AbstractThis study was carried out to develop a prediction model for soluble solid content (SSC) of intact chestnut and to detect internal defects using nuclear magnetic resonance (NMR) relaxometry and magnetic resonance imaging (MRI). Inversion recovery and Carr–Purcell–Meiboom–Gill (CPMG) pulse sequences used to determine the longitudinal (T1) and transverse (T2) relaxation times, respectively. Partial least squares regression (PLSR) was adopted to predict SSCs of chestnuts with NMR data and histograms from MR images. The coefficient of determination (R2), root mean square error of prediction (RMSEP), ratio of prediction to deviation (RPD), and the ratio of error range (RER) of the optimized model to predict SSC were 0.77, 1.41 °Brix, 1.86, and 11.31 with a validation set. Furthermore, an image-processing algorithm has been developed to detect internal defects such as decay, mold, and cavity using MR images. The classification applied with the developed image processing algorithm was over 94% accurate to classify. Based on the results obtained, it was determined that the NMR signal could be applied for grading several levels by SSC, and MRI could be used to evaluate the internal qualities of chestnuts.


1995 ◽  
Vol 11 (5) ◽  
pp. 751-757 ◽  
Author(s):  
J. A. Throop ◽  
D. J. Aneshansley ◽  
B. L. Upchurch

2011 ◽  
Vol 36 (1) ◽  
pp. 48-57 ◽  
Author(s):  
Kwang-Wook Seo ◽  
Hyeon-Tae Kim ◽  
Dae-Weon Lee ◽  
Yong-Cheol Yoon ◽  
Dong-Yoon Choi

Sign in / Sign up

Export Citation Format

Share Document