scholarly journals Splicing modulators elicit global translational repression by condensate-prone proteins translated from introns

2020 ◽  
Author(s):  
Jagat Krishna Chhipi Shrestha ◽  
Tilman Schneider-Poetsch ◽  
Takehiro Suzuki ◽  
Mari Mito ◽  
Khalid Khan ◽  
...  

AbstractChemical splicing modulators that bind to the spliceosome have provided an attractive venue for cancer treatment. Splicing modulators induce accumulation and subsequent translation of a subset of intron-retained mRNAs. Yet, the biological effect of proteins containing translated intron sequences remains unclear. Here we identified a number of truncated proteins generated upon treatment with the splicing modulator spliceostatin A (SSA) using genome-wide ribosome profiling and bio-orthogonal non-canonical amino-acid tagging (BONCAT) mass spectrometry. A subset of these truncated proteins has intrinsically disordered regions, forms insoluble cellular condensates, and triggers the proteotoxic stress response through JNK phosphorylation, thereby inhibiting the mTORC1 pathway. In turn, this reduces global translation. These findings indicate that creating an overburden of condensate-prone proteins derived from introns represses translation and prevents further production of harmful truncated proteins. This mechanism appears to contribute to the antiproliferative and proapoptotic activity of splicing modulators.

2021 ◽  
Author(s):  
Sarthak Sahoo ◽  
Divyoj Singh ◽  
Anumeha Singh ◽  
Sandeep M. Eswarappa

A stop codon ensures termination of translation at a specific position on an mRNA. Sometimes, termination fails as translation machinery recognizes a stop codon as a sense codon. This leads to stop codon readthrough (SCR) resulting in the continuation of translation beyond the stop codon, generating protein isoforms with C-terminal extension. SCR has been observed in viruses, fungi, and multicellular organisms including mammals. However, SCR is largely unexplored in plants. In this study, we have analyzed ribosome profiling datasets to identify mRNAs that undergo SCR in Arabidopsis thaliana. Analyses of the ribosome density, ribosome coverage and three-nucleotide periodicity of the ribosome profiling reads, in the mRNA region downstream of the stop codon, provided strong evidence for SCR in mRNAs of 144 genes. This process generates putative peroxisomal targeting signal, nuclear localization signal, prenylation signal, transmembrane helix and intrinsically disordered regions in the C-terminal extension of several of these proteins. Gene ontology (GO) functional enrichment analysis revealed that these 144 genes belong to three major functional groups - translation, photosynthesis and abiotic stress tolerance. Finally, using a luminescence-based assay, we experimentally demonstrate SCR in representative mRNAs belonging to these functional classes. Based on these observations, we propose that SCR plays an important role in plant physiology by regulating the protein localization and function.


2020 ◽  
Vol 17 (5) ◽  
pp. 379-391
Author(s):  
Farzaneh Afzali ◽  
Parisa Ghahremanifard ◽  
Mohammad Mehdi Ranjbar ◽  
Mahdieh Salimi

Background: The tolerogenic homeostasis in Breast Cancer (BC) can be surpassed by rationally designed immune-encouraging constructs against tumor-specific antigens through immunoinformatics approach. Objective: Availability of high throughput data providing the underlying concept of diseases and awarded computational simulations, lead to screening the potential medications and strategies in less time and cost. Despite the extensive effects of Placenta Specific 1 (PLAC1) in BC progression, immune tolerance, invasion, cell cycle regulation, and being a tumor-specific antigen the fundamental mechanisms and regulatory factors were not fully explored. It is also worth to design an immune response inducing construct to surpass the hurdles of traditional anti-cancer treatments. Methods and Result: The study was initiated by predicting and modelling the PLAC1 secondary and tertiary structures and then engineering the fusion pattern of PLAC1 derived immunodominant predicted CD8+ and B-cell epitopes to form a multi-epitope immunogenic construct. The construct was analyzed considering the physiochemical characterization, safety, antigenicity, post-translational modification, solubility, and intrinsically disordered regions. After modelling its tertiary structure, proteinprotein docking simulation was carried out to ensure the attachment of construct with Toll-Like Receptor 4 (TLR4) as an immune receptor. To guarantee the highest expression of the designed construct in E. coli k12 as an expressional host, the codon optimization and in-silico cloning were performed. The PLAC1 related miRNAs in BC were excavated and validated through TCGA BC miRNA-sequencing and databases; the common pathways then were introduced as other probable mechanisms of PLAC1 activity. Conclusion: Regarding the obtained in-silico results, the designed anti-PLAC1 multi-epitope construct can probably trigger humoral and cellular immune responses and inflammatory cascades, therefore may have the potential of halting BC progression and invasion engaging predicted pathways.


Sign in / Sign up

Export Citation Format

Share Document