scholarly journals Acronym Disambiguation in Clinical Notes from Electronic Health Records

Author(s):  
Nicholas B. Link ◽  
Selena Huang ◽  
Tianrun Cai ◽  
Zeling He ◽  
Jiehuan Sun ◽  
...  

ABSTRACTObjectiveThe use of electronic health records (EHR) systems has grown over the past decade, and with it, the need to extract information from unstructured clinical narratives. Clinical notes, however, frequently contain acronyms with several potential senses (meanings) and traditional natural language processing (NLP) techniques cannot differentiate between these senses. In this study we introduce an unsupervised method for acronym disambiguation, the task of classifying the correct sense of acronyms in the clinical EHR notes.MethodsWe developed an unsupervised ensemble machine learning (CASEml) algorithm to automatically classify acronyms by leveraging semantic embeddings, visit-level text and billing information. The algorithm was validated using note data from the Veterans Affairs hospital system to classify the meaning of three acronyms: RA, MS, and MI. We compared the performance of CASEml against another standard unsupervised method and a baseline metric selecting the most frequent acronym sense. We additionally evaluated the effects of RA disambiguation on NLP-driven phenotyping of rheumatoid arthritis.ResultsCASEml achieved accuracies of 0.947, 0.911, and 0.706 for RA, MS, and MI, respectively, higher than a standard baseline metric and (on average) higher than a state-of-the-art unsupervised method. As well, we demonstrated that applying CASEml to medical notes improves the AUC of a phenotype algorithm for rheumatoid arthritis.ConclusionCASEml is a novel method that accurately disambiguates acronyms in clinical notes and has advantages over commonly used supervised and unsupervised machine learning approaches. In addition, CASEml improves the performance of NLP tasks that rely on ambiguous acronyms, such as phenotyping.

2021 ◽  
Author(s):  
Ye Seul Bae ◽  
Kyung Hwan Kim ◽  
Han Kyul Kim ◽  
Sae Won Choi ◽  
Taehoon Ko ◽  
...  

BACKGROUND Smoking is a major risk factor and important variable for clinical research, but there are few studies regarding automatic obtainment of smoking classification from unstructured bilingual electronic health records (EHR). OBJECTIVE We aim to develop an algorithm to classify smoking status based on unstructured EHRs using natural language processing (NLP). METHODS With acronym replacement and Python package Soynlp, we normalize 4,711 bilingual clinical notes. Each EHR notes was classified into 4 categories: current smokers, past smokers, never smokers, and unknown. Subsequently, SPPMI (Shifted Positive Point Mutual Information) is used to vectorize words in the notes. By calculating cosine similarity between these word vectors, keywords denoting the same smoking status are identified. RESULTS Compared to other keyword extraction methods (word co-occurrence-, PMI-, and NPMI-based methods), our proposed approach improves keyword extraction precision by as much as 20.0%. These extracted keywords are used in classifying 4 smoking statuses from our bilingual clinical notes. Given an identical SVM classifier, the extracted keywords improve the F1 score by as much as 1.8% compared to those of the unigram and bigram Bag of Words. CONCLUSIONS Our study shows the potential of SPPMI in classifying smoking status from bilingual, unstructured EHRs. Our current findings show how smoking information can be easily acquired and used for clinical practice and research.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1908
Author(s):  
Fabiola Fernández-Gutiérrez ◽  
Jonathan I. Kennedy ◽  
Roxanne Cooksey ◽  
Mark Atkinson ◽  
Ernest Choy ◽  
...  

(1) Background: We aimed to develop a transparent machine-learning (ML) framework to automatically identify patients with a condition from electronic health records (EHRs) via a parsimonious set of features. (2) Methods: We linked multiple sources of EHRs, including 917,496,869 primary care records and 40,656,805 secondary care records and 694,954 records from specialist surgeries between 2002 and 2012, to generate a unique dataset. Then, we treated patient identification as a problem of text classification and proposed a transparent disease-phenotyping framework. This framework comprises a generation of patient representation, feature selection, and optimal phenotyping algorithm development to tackle the imbalanced nature of the data. This framework was extensively evaluated by identifying rheumatoid arthritis (RA) and ankylosing spondylitis (AS). (3) Results: Being applied to the linked dataset of 9657 patients with 1484 cases of rheumatoid arthritis (RA) and 204 cases of ankylosing spondylitis (AS), this framework achieved accuracy and positive predictive values of 86.19% and 88.46%, respectively, for RA and 99.23% and 97.75% for AS, comparable with expert knowledge-driven methods. (4) Conclusions: This framework could potentially be used as an efficient tool for identifying patients with a condition of interest from EHRs, helping clinicians in clinical decision-support process.


Leprosy is one of the major public health problems and listed among the neglected tropical diseases in India. It is also called Hansen's Diseases (HD), which is a long haul contamination by microorganisms Mycobacterium leprae or Mycobacterium lepromatosis.Untreated, leprosy can dynamic and changeless harm to the skin, nerves, appendages, and eyes. This paper intends to depict classification of leprosy cases from the main indication of side effects. Electronic Health Records (EHRs) of Leprosy Patients from verified sources have been generated. The clinical notes included in EHRs have been processed through Natural Language Processing Tools. In order to predict type of leprosy, Rule based classification method has been proposed in this paper. Further our approach is compared with various Machine Learning (ML) algorithms like Support Vector Machine (SVM), Logistic regression (LR) and performance parameters are compared.


Sign in / Sign up

Export Citation Format

Share Document