scholarly journals Variant Curation Expert Panel Recommendations for RYR1 Pathogenicity Assertions in Malignant Hyperthermia Susceptibility

2020 ◽  
Author(s):  
Jennifer J. Johnston ◽  
Robert T. Dirksen ◽  
Thierry Girard ◽  
Stephen G. Gonsalves ◽  
Phil M. Hopkins ◽  
...  

ABSTRACTPurposePrevention of malignant hyperthermia (MH) requires an understanding of RYR1 variant pathogenicity to assess the risk of exposure to triggering agents. Personalized medicine, especially secondary findings and eventually genomic screening, will contribute toward this goal.MethodsWe specified ACMG/AMP criteria for variant interpretation for RYR1 and MH. Proposed rules were piloted on 84 variants. We applied quantitative evidence calibration for several criteria using likelihood ratios based on the Bayesian framework.ResultsSeven ACMG/AMP criteria were adopted without changes, ten were adopted with RYR1-specific modifications, and nine were dropped. The in silico (PP3 and BP4) and hot spot criteria (PM1) were evaluated quantitatively. REVEL gave an OR of 23:1 for PP3 and 16:1 for BP4 using trichotomized cut-offs of >0.85 (pathogenic) and <0.5 (benign). The PM1 hotspot criterion had an OR of 24:1. PP3 and PM1 were implemented at moderate strength. Applying the revised ACMG criteria to 44 recognized MH variants, 30 were assessed as pathogenic, 12 as likely pathogenic, and two as VUS.ConclusionCuration of these variants will facilitate interpretation of RYR1/MH genomic testing results, which is especially important for secondary findings analyses. Our approach to quantitatively calibrating criteria are generalizable to other variant curation expert panels.

2020 ◽  
Vol 133 (6) ◽  
pp. 1277-1282 ◽  
Author(s):  
Leslie G. Biesecker ◽  
Robert T. Dirksen ◽  
Thierry Girard ◽  
Philip M. Hopkins ◽  
Sheila Riazi ◽  
...  

It is timely to consider the utility and practicability of screening for malignant hyperthermia susceptibility using genomic testing. Here the authors pose a simple, but bold question: what would it take to end deaths from malignant hyperthermia? The authors review recent advances and propose a scientific and clinical pathway toward this audacious goal to provoke discussion in the field.


Author(s):  
Jennifer J. Johnston ◽  
Robert T. Dirksen ◽  
Thierry Girard ◽  
Stephen G. Gonsalves ◽  
Philip M. Hopkins ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 1207-1215
Author(s):  
Jordan F Baye ◽  
Natasha J Petry ◽  
Shauna L Jacobson ◽  
Michelle M Moore ◽  
Bethany Tucker ◽  
...  

Aim: This manuscript describes implementation of clinical decision support for providers concerned with perioperative complications of malignant hyperthermia susceptibility. Materials & methods: Clinical decision support for malignant hyperthermia susceptibility was implemented in 2018 based around our pre-emptive genotyping platform. We completed a brief descriptive review of patients who underwent pre-emptive testing, focused particularly on RYR1 and CACNA1S genes. Results: To date, we have completed pre-emptive genetic testing on more than 10,000 patients; 13 patients having been identified as a carrier of a pathogenic or likely pathogenic variant of RYR1 or CACNA1S. Conclusion: An alert system for malignant hyperthermia susceptibility – as an extension of our pre-emptive genomics platform – was implemented successfully. Implementation strategies and lessons learned are discussed herein.


1987 ◽  
Vol 66 (4) ◽  
pp. 547-550 ◽  
Author(s):  
Ronald D. Miller ◽  
MARILYN GREEN LARACH ◽  
HENRY ROSENBERG ◽  
DAVID R. LARACH ◽  
A. MICHAEL BROENNLE

Author(s):  
Jiguang Peng ◽  
Jiale Xiang ◽  
Xiangqian Jin ◽  
Junhua Meng ◽  
Nana Song ◽  
...  

The American College of Medical Genetics and Genomics, and the Association for Molecular Pathology (ACMG/AMP) have proposed a set of evidence-based guidelines to support sequence variant interpretation. The ClinGen hearing loss expert panel (HL-EP) introduced further specifications into the ACMG/AMP framework for genetic hearing loss. This study developed a tool named VIP-HL, aiming to semi-automate the HL ACMG/AMP rules. VIP-HL aggregates information from external databases to automate 13 out of 24 ACMG/AMP rules specified by HL-EP, namely PVS1, PS1, PM1, PM2, PM4, PM5, PP3, BA1, BS1, BS2, BP3, BP4, and BP7. We benchmarked VIP-HL using 50 variants where 83 rules were activated by the ClinGen HL-EP. VIP-HL concordantly activated 96% (80/83) rules, significantly higher than that of by InterVar (47%; 39/83). Of 4948 ClinVar star 2+ variants from 142 deafness-related genes, VIP-HL achieved an overall variant interpretation concordance in 88.0% (4353/4948). VIP-HL is an integrated online tool for reliable automated variant classification in hearing loss genes. It assists curators in variant interpretation and provides a platform for users to share classifications with each other. VIP-HL is available with a user-friendly web interface at http://hearing.genetics.bgi.com/.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5794-5794
Author(s):  
Shruthi Mohan ◽  
Kristy Lee ◽  
Manuel Carcao ◽  
Bhavya S Doshi ◽  
Kate Downes ◽  
...  

The genetics of blood coagulation has been an ongoing area of research; and with the advent of next generation sequencing panels, there is a significant increase in the number of variants identified in coagulation factor genes. Several published reports and online databases document the variants observed in patients with bleeding disorders; however, the clinical interpretation of these variants is not always straight-forward. To enable gene-specific variant interpretation in coagulation factor deficiency disorders, the National Institutes of Health (NIH)-funded effort, Clinical Genome Resource (ClinGen), has developed the Coagulation Factor Deficiency Variant Curation Expert Panel (CFD-VCEP). The CFD-VCEP is comprised of expert clinicians, genetic counselors, clinical laboratory diagnosticians and researchers working toward the goal of developing and implementing standardized protocols for sequence variant interpretation for coagulation factor genes. The CFD-VCEP adapts the 2015 American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for precise and consistent variant classification to genes involved in blood coagulation deficiencies. These guidelines recommend the use of 28 criteria codes based on the evidence category and the strength of the evidence (see Figure below). The first two genes under the purview of CFD-VCEP are F8 (OMIM: 300841) and F9 (OMIM: 300746). Pathogenic variants in the F8 and F9 genes resulting in the loss of protein function cause Hemophilia A and B, respectively. Owing to the similarity between these two genes with respect to their role in the coagulation cascade as well as the resulting phenotype, specification of variant curation guidelines for both genes has been undertaken simultaneously. With the completion of guideline specification for F8 and F9, the CFD-VCEP will subsequently continue this effort for other coagulation factor genes, while also curating F8 and F9 variants reported in ClinVar and other variant databases. Modifying the ACMG/AMP guidelines involves gene- and disease-informed specifications of the recommended criteria codes. This includes identifying which codes are applicable and which are not, defining gene- and disease-specific cut-offs such as for population frequency, and making code strength adjustments when appropriate. The specified guidelines are further refined based on their performance on a set of pilot variants (n = 30) for each gene compared to existing assertions of variant classification in ClinVar and by diagnostic laboratories represented in the CFD-VCEP. F8 and F9 variants classified by the CFD-VCEP will be submitted to ClinVar at the 3-star review status, with the tag of "FDA-recognized database", and the CFD-VCEP plans to begin this process by the second quarter of 2020. The considerations by the CFD-VCEP in the guideline-specification process and results from the pilot analysis will be discussed. This effort will lead to the standardized use of evidence criteria for the evaluation of variants in F8 and F9, which will reduce the number of variants of uncertain significance and those of conflicting interpretations, making genetic testing results more informative for providers and patients. The CFD-VCEP also encourages sharing de-identified data on variants among laboratories, which enables accurate and consistent curations. Figure Disclosures Lee: UNC Hemophilia Treatment Center: Employment. Carcao:Biotest: Honoraria, Membership on an entity's Board of Directors or advisory committees; Grifols: Honoraria, Membership on an entity's Board of Directors or advisory committees; Shire/Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; CSL Behring: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novo Nordisk Inc: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees; Agios: Research Funding; LFB: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bioverativ/Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kemball-Cook:European Association for Haemophilia and Allied Disorders: Other: Freelance . Leebeek:CSL Behring: Research Funding; uniQure BV: Consultancy, Research Funding; Baxalta/Shire: Research Funding. Miller:Division of Blood Disorders, National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document