scholarly journals Learning from unexpected events in the neocortical microcircuit

2021 ◽  
Author(s):  
Colleen J. Gillon ◽  
Jason E. Pina ◽  
Jérôme A. Lecoq ◽  
Ruweida Ahmed ◽  
Yazan Billeh ◽  
...  

AbstractScientists have long conjectured that the neocortex learns the structure of the environment in a predictive, hierarchical manner. To do so, expected, predictable features are differentiated from unexpected ones by comparing bottom-up and top-down streams of data. It is theorized that the neocortex then changes the representation of incoming stimuli, guided by differences in the responses to expected and unexpected events. Such differences in cortical responses have been observed; however, it remains unknown whether these unexpected event signals govern subsequent changes in the brain’s stimulus representations, and, thus, govern learning. Here, we show that unexpected event signals predict subsequent changes in responses to expected and unexpected stimuli in individual neurons and distal apical dendrites that are tracked over a period of days. These findings were obtained by observing layer 2/3 and layer 5 pyramidal neurons in primary visual cortex of awake, behaving mice using two-photon calcium imaging. We found that many neurons in both layers 2/3 and 5 showed large differences between their responses to expected and unexpected events. These unexpected event signals also determined how the responses evolved over subsequent days, in a manner that was different between the somata and distal apical dendrites. This difference between the somata and distal apical dendrites may be important for hierarchical computation, given that these two compartments tend to receive bottom-up and top-down information, respectively. Together, our results provide novel evidence that the neocortex indeed instantiates a predictive hierarchical model in which unexpected events drive learning.

2021 ◽  
Author(s):  
William T Redman ◽  
Nora S Wolcott ◽  
Luca Montelisciani ◽  
Gabriel Luna ◽  
Tyler D Marks ◽  
...  

The hippocampus consists of a stereotyped neuronal circuit repeated along the septal-temporal axis. This transverse circuit contains distinct subfields with stereotyped connectivity that support crucial cognitive processes, including episodic and spatial memory. However, comprehensive measurements across the transverse hippocampal circuit in vivo are intractable with existing techniques. Here, we developed an approach for two-photon imaging of the transverse hippocampal plane in awake mice via implanted glass microperiscopes, allowing optical access to the major hippocampal subfields and to the dendritic arbor of pyramidal neurons. Using this approach, we tracked dendritic morphological dynamics on CA1 apical dendrites and characterized spine turnover. We then used calcium imaging to quantify the prevalence of place and speed cells across subfields. Finally, we measured the anatomical distribution of spatial information, finding a non-uniform distribution of spatial selectivity along the DG-to-CA1 axis. This approach extends the existing toolbox for structural and functional measurements of hippocampal circuitry.


2018 ◽  
Vol 80 (1) ◽  
pp. 87-115 ◽  
Author(s):  
Hui Xiong ◽  
Jian Zhang

Previous studies on the influence of media convergence in China either took a market- or norm-oriented approach. From a news production perspective, the current study analyses the interaction between the top-down design and bottom-up practices of journalists to disclose the influence of the dominant path of media convergence within the press industry of Fujian Province. A survey and 20 in-depth interviews show that the current media convergence practices of Fujian’s press industry fail to receive the support of journalists because of institutional, organisational and individual complexities, rather than technological reasons. This study discusses the implications of this finding for media convergence in China.


2021 ◽  
Author(s):  
Sam E. Benezra ◽  
Kripa B. Patel ◽  
Citlali Pérez Campos ◽  
Elizabeth M. C. Hillman ◽  
Randy M Bruno

Learning alters cortical representations and improves perception. Apical tuft dendrites in Layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of Layer 5 pyramidal neurons as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alexander Naka ◽  
Julia Veit ◽  
Ben Shababo ◽  
Rebecca K Chance ◽  
Davide Risso ◽  
...  

The neocortex is functionally organized into layers. Layer four receives the densest bottom up sensory inputs, while layers 2/3 and 5 receive top down inputs that may convey predictive information. A subset of cortical somatostatin (SST) neurons, the Martinotti cells, gate top down input by inhibiting the apical dendrites of pyramidal cells in layers 2/3 and 5, but it is unknown whether an analogous inhibitory mechanism controls activity in layer 4. Using high precision circuit mapping, in vivo optogenetic perturbations, and single cell transcriptional profiling, we reveal complementary circuits in the mouse barrel cortex involving genetically distinct SST subtypes that specifically and reciprocally interconnect with excitatory cells in different layers: Martinotti cells connect with layers 2/3 and 5, whereas non-Martinotti cells connect with layer 4. By enforcing layer-specific inhibition, these parallel SST subnetworks could independently regulate the balance between bottom up and top down input.


PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (19) ◽  
Author(s):  
Michael Cole
Keyword(s):  
Top Down ◽  

Sign in / Sign up

Export Citation Format

Share Document