scholarly journals Consequences of the Nyquist-Shannon sampling criterion in Mesoscopic Multiphoton Microscopy to avail full-field sub-micron resolution resolvability

2021 ◽  
Author(s):  
Bhaskar Jyoti Borah ◽  
Jye-Chang Lee ◽  
Han-Hsiung Chi ◽  
Yang-Ting Hsiao ◽  
Chen-Tung Yen ◽  
...  

AbstractWith a limited effective voxel rate, to date, each laser-scanning mesoscopic multiphoton microscope (MPM), despite securing an ultra-large field of view (FOV) and an ultra-high optical resolution simultaneously, experiences a fundamental issue with digitization; i.e., inability to satisfy the Nyquist-Shannon sampling criterion to resolve the optics-limited sub-micron resolution over the whole FOV. Such a system either neglects the criterion degrading the digital resolution to twice the pixel size, or significantly reduces the imaging area and/or the imaging speed to respect the digitization. Here we introduce a Nyquist figure of merit parameter to assess this issue, further to comprehend a maximum aliasing-free FOV and a cross-over excitation wavelength for a laser scanning MPM system. Based on our findings we demonstrate an ultra-high voxel rate acquisition in a custom-built mesoscopic MPM system to exceed the Nyquist-rate for a >3800 FOV-resolution ratio while not compromising the imaging speed as well as the photon-budget.

2009 ◽  
Vol 34 (12) ◽  
pp. 1771 ◽  
Author(s):  
Zhixing Xie ◽  
Shuliang Jiao ◽  
Hao F. Zhang ◽  
Carmen A. Puliafito

2002 ◽  
Vol 68 (2) ◽  
pp. 901-909 ◽  
Author(s):  
Thomas R. Neu ◽  
Ute Kuhlicke ◽  
John R. Lawrence

ABSTRACT A major limitation for the use of two-proton laser scanning microscopy (2P-LSM) in biofilm and other studies is the lack of a thorough understanding of the excitation-emission responses of potential fluorochromes. In order to use 2P-LSM, the utility of various fluorochromes and probes specific for a range of biofilm constituents must be evaluated. The fluorochromes tested in this study included classical nucleic acid-specific stains, such as acridine orange (AO) and 4",6"-diamidino-2-phenylindole (DAPI), as well as recently developed stains. In addition, stains specific for biofilm extracellular polymeric substances (EPS matrix components) were tested. Two-photon excitation with a Ti/Sapphire laser was carried out at wavelengths from 760 to 900 nm in 10-nm steps. It was found that autofluorescence of phototrophic organisms (cyanobacteria and green algae) resulted in strong signals for the entire excitation range. In addition, the coenzyme F420-related autofluorescence of methanogenic bacteria could be used to obtain images of dense aggregates (excitation wavelength, 780 nm). The intensities of the emission signals for the nucleic acid-specific fluorochromes varied. For example, the intensities were similar for excitation wavelengths ranging from 780 to 900 nm for AO but were higher for a narrower range, 780 to 810 nm, for DAPI. In selective excitation, fading, multiple staining, and combined single-photon-two-photon studies, the recently developed nucleic acid-specific fluorochromes proved to be more suitable regardless of whether they are intended for living or fixed samples. Probes specific for proteins and glycoconjugates allowed two-photon imaging of polymeric biofilm constituents. Selective excitation-emission was observed for Calcofluor White M2R (780 to 800 nm) and SyproOrange (880 to 900 nm). In addition, fluor-conjugated concanavalin A lectins were examined and provided acceptable two-photon emission signals at wavelengths ranging from 780 to 800 nm. Finally, CellTracker, a fluorochrome suitable for long-term labeling of microbial eucaryote cells, was found to give strong emission at wavelengths ranging from 770 to 810 nm. If fluorochromes have the same two-photon excitation cross section, they are suitable for multiple staining and multichannel recording. Generally, if an appropriate excitation wavelength and fluorochrome were used, it was possible to obtain more highly resolved images for thick biofilm samples with two-photon laser microscopy than with conventional single-photon laser microscopy. Due to its potential for higher resolution in light-scattering tissue-like material, such as biofilms, and extremely localized excitation, 2P-LSM is a valuable addition to conventional confocal laser scanning microscopy with single-photon excitation. However, further development of the method and basic research are necessary to take full advantage of nonlinear excitation in studies of interfacial microbial ecology.


2014 ◽  
Vol 112 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Xiaodong Chen ◽  
Gregory C. DeAngelis ◽  
Dora E. Angelaki

The ventral intraparietal area (VIP) processes multisensory visual, vestibular, tactile, and auditory signals in diverse reference frames. We recently reported that visual heading signals in VIP are represented in an approximately eye-centered reference frame when measured using large-field optic flow stimuli. No VIP neuron was found to have head-centered visual heading tuning, and only a small proportion of cells had reference frames that were intermediate between eye- and head-centered. In contrast, previous studies using moving bar stimuli have reported that visual receptive fields (RFs) in VIP are head-centered for a substantial proportion of neurons. To examine whether these differences in previous findings might be due to the neuronal property examined (heading tuning vs. RF measurements) or the type of visual stimulus used (full-field optic flow vs. a single moving bar), we have quantitatively mapped visual RFs of VIP neurons using a large-field, multipatch, random-dot motion stimulus. By varying eye position relative to the head, we tested whether visual RFs in VIP are represented in head- or eye-centered reference frames. We found that the vast majority of VIP neurons have eye-centered RFs with only a single neuron classified as head-centered and a small minority classified as intermediate between eye- and head-centered. Our findings suggest that the spatial reference frames of visual responses in VIP may depend on the visual stimulation conditions used to measure RFs and might also be influenced by how attention is allocated during stimulus presentation.


1999 ◽  
Vol 79 (4) ◽  
pp. 1089-1125 ◽  
Author(s):  
Akiyuki Takahashi ◽  
Patricia Camacho ◽  
James D. Lechleiter ◽  
Brian Herman

To a certain extent, all cellular, physiological, and pathological phenomena that occur in cells are accompanied by ionic changes. The development of techniques allowing the measurement of such ion activities has contributed substantially to our understanding of normal and abnormal cellular function. Digital video microscopy, confocal laser scanning microscopy, and more recently multiphoton microscopy have allowed the precise spatial analysis of intracellular ion activity at the subcellular level in addition to measurement of its concentration. It is well known that Ca2+ regulates numerous physiological cellular phenomena as a second messenger as well as triggering pathological events such as cell injury and death. A number of methods have been developed to measure intracellular Ca2+. In this review, we summarize the advantages and pitfalls of a variety of Ca2+ indicators used in both optical and nonoptical techniques employed for measuring intracellular Ca2+ concentration.


Sign in / Sign up

Export Citation Format

Share Document