scholarly journals Intergenerational Effects of Early Life Starvation on Life-History, Consumption, and Transcriptome of a Holometabolous Insect

2021 ◽  
Author(s):  
Sarah Catherine Paul ◽  
Pragya Singh ◽  
Alice B. Dennis ◽  
Caroline Müller

ABSTRACTIntergenerational effects, also known as parental effects in which the offspring phenotype is influenced by the parental phenotype, can occur in response to parental early life food-limitation and adult reproductive environment. However, little is known about how these parental life stage-specific environments interact with each other and with the offspring environment to influence offspring phenotype, particularly in organisms that realize distinct niches across ontogeny. We examined the effects of parental early life starvation and adult reproductive environment on offspring traits under matching or mismatching offspring early life starvation conditions using the holometabolous, haplo-diploid insect Athalia rosae (turnip sawfly). We show that the parental early life starvation treatment had context-dependent intergenerational effects on the life-history and consumption traits of offspring larvae, partly in interaction with offspring conditions and sex, while there was no significant effect of parental adult reproductive environment. In addition, while offspring larval starvation led to numerous gene- and pathway-level expression differences, parental starvation impacted fewer genes and only the ribosomal pathway. Our findings reveal that parental starvation evokes complex intergenerational effects on offspring life-history traits, consumption patterns as well as gene expression, although the effects are less pronounced than those of offspring starvation.

2016 ◽  
Vol 73 (9) ◽  
pp. 1405-1412 ◽  
Author(s):  
Stavroula Tsoukali ◽  
Karin H. Olsson ◽  
André W. Visser ◽  
Brian R. MacKenzie

In a stable population, the adult lifetime reproductive value must be balanced against early life survival. Although delaying maturity may increase fecundity, it also reduces survival. Larger size at maturity therefore not only allows for higher fecundity, but requires it. Using simple arguments from life history, we derive a direct proportionality relationship between the adult lifetime reproductive value and weight at maturation and find that this relationship is consistent with empirical evidence from 28 stocks and species of bony fish from temperate–boreal environments. However, the expected proportionality falls off if mortality increases to include fishing. Furthermore, we find that the fecundity type (determinate or indeterminate) affects the predicted adult reproductive value, which is significantly (10-fold) higher for an indeterminate spawner than for a determinate spawner of the same weight. These differences may relate to trade-offs in the adult life history traits and (or) to seasonality in the spawning environment, with subsequent consequences for early life stage survivorship.


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


2009 ◽  
Vol 82 (4) ◽  
pp. 673-681 ◽  
Author(s):  
Maylis Labonne ◽  
Eric Morize ◽  
Pierre Scolan ◽  
Raymond Lae ◽  
Eric Dabas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document