scholarly journals Extended-Ensemble Docking to Probe Evolution of Ligand Binding Sites in Proteins Undergoing Large-Scale Structural Changes for Their Function

Author(s):  
Karan Kapoor ◽  
Sundar Thangapandian ◽  
Emad Tajkhorshid

AbstractProteins can sample a broad energetic landscape as they undergo conformational transition between different functional states. As key players in almost all cellular processes, proteins are important drug targets. Considering the different conformational states of proteins is therefore central for a successful drug-design strategy. Here we introduce a novel docking protocol, termed as extended-ensemble docking, pertaining to proteins that undergo large-scale (global) conformational changes during their function. In its application to multidrug ABC-transporter P-glycoprotein (Pgp), extensive non-equilibrium molecular dynamics simulations employing system-specific collective variables capturing the alternate access mechanism of Pgp, are first used to construct the transition cycle of the transporter. An extended set of conformational states representing the full transition between the inward- and the outward-facing states of Pgp, is then used to seed high-throughput docking calculations of a set of known substrates, non-substrates, and modulators of the transporter. Large differences are observed in the predicted binding affinities in the conformational ensemble, with compounds showing stronger binding affinities in intermediate conformations compared to the starting crystal structure. Hierarchical clustering of the individual binding modes of the different compounds shows all ligands preferably bind to the large central cavity of the protein, formed at the apex of the transmembrane domain (TMD), whereas only small binding populations are observed in the previously described R and H sites present in the individual TMD leaflets. The central cavity is further clustered into two major subsites: first subsite preferably binds transported substrates and high-affinity inhibitors, whereas the second subsite shows preference for larger substrates and low-affinity modulators. These central sites along with the low-affinity interaction sites present in the individual TMD leaflets may respectively correspond to the proposed high- and low-affinity binding sites in Pgp. We propose further optimization strategy for developing more potent inhibitor of Pgp, based on increasing its specificity to the extended-ensemble of the protein instead of using a single protein structure, as well as its selectivity for the high-affinity binding site. In contrast to earlier in-silico studies using single static structures of Pgp, our results show good correlation with other experimental studies, pointing to the importance of incorporating the global conformational flexibility of proteins in future drug-discovery endeavors.

1994 ◽  
Vol 72 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Neelesh Bangalore ◽  
William N Drohan ◽  
Carolyn L Orthner

SummaryActivated protein C (APC) is an antithrombotic serine proteinase having anticoagulant, profibrinolytic and anti-inflammatory activities. Despite its potential clinical utility, relatively little is known about its clearance mechanisms. In the present study we have characterized the interaction of APC and its active site blocked forms with human umbilical vein endothelial cells (HUVEC). At 4° C 125I-APC bound to HUVEC in a specific, time dependent, saturable and reversible manner. Scatchard analysis of the binding isotherm demonstrated a Kd value of 6.8 nM and total number of binding sites per cell of 359,000. Similar binding isotherms were obtained using radiolabeled protein C (PC) zymogen as well as D-phe-pro-arg-chloromethylketone (PPACK) inhibited APC indicating that a functional active site was not required. Competition studies showed that the binding of APC, PPACK-APC and PC were mutually exclusive suggesting that they bound to the same site(s). Proteolytic removal of the N-terminal γ-carboxyglutamic acid (gla) domain of PC abolished its ability to compete indicating that the gla-domain was essential for cell binding. Surprisingly, APC binding to these cells appeared to be independent of protein S, a cofactor of APC generally thought to be required for its high affinity binding to cell surfaces. The identity of the cell binding site(s), for the most part, appeared to be distinct from other known APC ligands which are associated with cell membranes or extracellular matrix including phospholipid, thrombomodulin, factor V, plasminogen activator inhibitor type 1 (PAI-1) and heparin. Pretreatment of HUVEC with antifactor VIII antibody caused partial inhibition of 125I-APC binding indicating that factor VIII or a homolog accounted for ∼30% of APC binding. Studies of the properties of surface bound 125I-APC or 125I-PC and their fate at 4°C compared to 37 °C were consistent with association of ∼25% of the initially bound radioligand with an endocytic receptor. However, most of the radioligand appeared not to be bound to an endocytic receptor and dissociated rapidly at 37° C in an intact and functional state. These data indicate the presence of specific, high affinity binding sites for APC and PC on the surface of HUVEC. While a minor proportion of binding sites may be involved in endocytosis, the identity and function of the major proportion is presently unknown. It is speculated that this putative receptor may be a further mechanisms of localizing the PC antithrombotic system to the vascular endothelium.


1992 ◽  
Vol 40 (6) ◽  
pp. 771-779 ◽  
Author(s):  
A A Maki ◽  
D G Baskin ◽  
W L Stahl

The anatomic distribution of high- and low-affinity cardiac glycoside binding sites in the nervous system is largely unknown. In the present study the regional distribution and properties of these sites were determined in rat brain by quantitative autoradiography (QAR). Two populations of cardiac glycoside binding sites were demonstrated with [3H]-ouabain, a specific inhibitor of Na,K-ATPases: (a) high-affinity binding sites with Kd values of 22-69 nM, which were blocked by erythrosin B, and (b) low-affinity binding sites with Kd values of 727-1482 nM. Sites with very low affinity for ouabain were not found by QAR. High- and low-affinity [3H]-ouabain binding sites were both found in all brain regions studied, including somatosensory cortex, thalamic and hypothalamic areas, medial forebrain bundle, amygdaloid nucleus, and caudate-putamen, although the distributions of high- and low-affinity sites were not congruent. Low-affinity [3H]-ouabain binding sites (Bmax = 222-358 fmol/mm2) were approximately twofold greater in number than high-affinity binding sites (Bmax = 76-138 fmol/mm2) in these regions of brain. Binding of [3H]-ouabain to both high- and low-affinity sites was blocked by Na+; however, low-affinity binding sites were less sensitive to inhibition by K+ (IC50 = 6.4 mM) than the high-affinity [3H]-ouabain binding sites (IC50 = 1.4 mM). The QAR method, utilizing [3H]-ouabain under standard conditions, is a valid method for studying modulation of Na,K-ATPase molecules in well-defined anatomic regions of the nervous system.


Sign in / Sign up

Export Citation Format

Share Document