scholarly journals Resting-state aperiodic neural dynamics predict individual differences in visuomotor performance and learning

2021 ◽  
Author(s):  
Maarten A Immink ◽  
Zachariah R Cross ◽  
Alex Chatburn ◽  
James Baumeister ◽  
Matthias Schlesewsky ◽  
...  

An emerging body of work has demonstrated that resting-state non-oscillatory, or aperiodic, 1/f neural activity is a functional and behaviorally relevant marker of cognitive function capacity. In the motor domain, previous work has only applied 1/f analyses to description of action coordination and performance. The value of aperiodic resting-state neural dynamics as a marker of individual visuomotor performance capacity remains unknown. Accordingly, the aim of this work was to investigate if individual 1/f intercept and slope parameters of aperiodic resting-state neural activity predict reaction time and perceptual sensitivity in an immersive virtual reality marksmanship task. The marksmanship task required speeded selection of target stimuli and avoidance of non-target stimuli selection. Motor and perceptual demands were incrementally increased across task blocks and participants performed the task across three training sessions spanning one week. When motor demands were high, steeper individual 1/f slope predicted shorter reaction time. This relationship did not change with practice. Increased 1/f intercept and a steeper 1/f slope were associated with higher perceptual sensitivity, measured as d′. However, this association was only observed under the highest levels of perceptual demand and only in the initial exposure to these conditions. Individuals with a lower 1/f intercept and a shallower 1/f slope demonstrated the greatest gains in perceptual sensitivity from task practice. These findings demonstrate that individual differences in motor and perceptual performance can be accounted for with resting-state aperiodic neural dynamics. The 1/f aperiodic parameters are most informative in predicting visuomotor performance under complex and demanding task conditions. In addition to predicting capacity for high visuomotor performance with a novel task, 1/f aperiodic parameters might also be useful in predicting which individuals might derive the most improvements from practice.

2021 ◽  
Vol 78 ◽  
pp. 102829
Author(s):  
Maarten A. Immink ◽  
Zachariah R. Cross ◽  
Alex Chatburn ◽  
James Baumeister ◽  
Matthias Schlesewsky ◽  
...  

2021 ◽  
pp. 1-15
Author(s):  
Bianca P. Acevedo ◽  
Tyler Santander ◽  
Robert Marhenke ◽  
Arthur Aron ◽  
Elaine Aron

<b><i>Background:</i></b> Sensory processing sensitivity (SPS) is a biologically based temperament trait associated with enhanced awareness and responsivity to environmental and social stimuli. Individuals with high SPS are more affected by their environments, which may result in overarousal, cognitive depletion, and fatigue. <b><i>Method:</i></b> We examined individual differences in resting-state (rs) brain connectivity (using functional MRI) as a function of SPS among a group of adults (<i>M</i> age = 66.13 ± 11.44 years) immediately after they completed a social affective “empathy” task. SPS was measured with the Highly Sensitive Person (HSP) Scale and correlated with rs brain connectivity. <b><i>Results:</i></b> Results showed enhanced rs brain connectivity within the ventral attention, dorsal attention, and limbic networks as a function of greater SPS. Region of interest analyses showed increased rs brain connectivity between the hippocampus and the precuneus (implicated in episodic memory); while weaker connectivity was shown between the amygdala and the periaqueductal gray (important for anxiety), and the hippocampus and insula (implicated in habitual cognitive processing). <b><i>Conclusions:</i></b> The present study showed that SPS is associated with rs brain connectivity implicated in attentional control, consolidation of memory, physiological homeostasis, and deliberative cognition. These results support theories proposing “depth of processing” as a central feature of SPS and highlight the neural processes underlying this cardinal feature of the trait.


2004 ◽  
Vol 16 (9) ◽  
pp. 1669-1679 ◽  
Author(s):  
Emily D. Grossman ◽  
Randolph Blake ◽  
Chai-Youn Kim

Individuals improve with practice on a variety of perceptual tasks, presumably reflecting plasticity in underlying neural mechanisms. We trained observers to discriminate biological motion from scrambled (nonbiological) motion and examined whether the resulting improvement in perceptual performance was accompanied by changes in activation within the posterior superior temporal sulcus and the fusiform “face area,” brain areas involved in perception of biological events. With daily practice, initially naive observers became more proficient at discriminating biological from scrambled animations embedded in an array of dynamic “noise” dots, with the extent of improvement varying among observers. Learning generalized to animations never seen before, indicating that observers had not simply memorized specific exemplars. In the same observers, neural activity prior to and following training was measured using functional magnetic resonance imaging. Neural activity within the posterior superior temporal sulcus and the fusiform “face area” reflected the participants' learning: BOLD signals were significantly larger after training in response both to animations experienced during training and to novel animations. The degree of learning was positively correlated with the amplitude changes in BOLD signals.


2014 ◽  
Vol 369 (1641) ◽  
pp. 20130211 ◽  
Author(s):  
Randolph Blake ◽  
Jan Brascamp ◽  
David J. Heeger

This essay critically examines the extent to which binocular rivalry can provide important clues about the neural correlates of conscious visual perception. Our ideas are presented within the framework of four questions about the use of rivalry for this purpose: (i) what constitutes an adequate comparison condition for gauging rivalry's impact on awareness, (ii) how can one distinguish abolished awareness from inattention, (iii) when one obtains unequivocal evidence for a causal link between a fluctuating measure of neural activity and fluctuating perceptual states during rivalry, will it generalize to other stimulus conditions and perceptual phenomena and (iv) does such evidence necessarily indicate that this neural activity constitutes a neural correlate of consciousness? While arriving at sceptical answers to these four questions, the essay nonetheless offers some ideas about how a more nuanced utilization of binocular rivalry may still provide fundamental insights about neural dynamics, and glimpses of at least some of the ingredients comprising neural correlates of consciousness, including those involved in perceptual decision-making.


Author(s):  
Koel Das ◽  
Sheng Li ◽  
Barry Giesbrecht ◽  
Zoe Kourtzi ◽  
Miguel Eckstein

Sign in / Sign up

Export Citation Format

Share Document