scholarly journals Proteome-scale amino-acid resolution footprinting of protein-binding sites in the intrinsically disordered regions of the human proteome

2021 ◽  
Author(s):  
Caroline Benz ◽  
Muhammad Ali ◽  
Izabella Krystkowiak ◽  
Leandro Simonetti ◽  
Ahmed Sayadi ◽  
...  

Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies using a wide range of experimental approaches have identified tens of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional and cell type-specific interactions are likely to be disproportionately under-represented. Moreover, for most known protein-protein interactions the binding regions remain uncharacterized. We previously developed proteomic peptide phage display (ProP-PD), a method for simultaneous proteome-scale identification of short linear motif (SLiM)-mediated interactions and footprinting of the binding region with amino acid resolution. Here, we describe the second-generation human disorderome (HD2), an optimized ProP-PD library that tiles all disordered regions of the human proteome and allows the screening of ~1,000,000 overlapping peptides in a single binding assay. We define guidelines for how to process, filter and rank the results and provide PepTools, a toolkit for annotation and analysis of identified hits. We uncovered 2,161 interaction pairs for 35 known SLiM-binding domains and confirmed a subset of 38 interactions by biophysical or cell-based assays. Finally, we show how the amino acid resolution binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the human proteome. The HD2 ProP-PD library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.

2017 ◽  
Vol 429 (18) ◽  
pp. 2790-2801 ◽  
Author(s):  
Alexander G. Kozlov ◽  
Min Kyung Shinn ◽  
Elizabeth A. Weiland ◽  
Timothy M. Lohman

FEBS Journal ◽  
2017 ◽  
Vol 284 (3) ◽  
pp. 485-498 ◽  
Author(s):  
Norman E. Davey ◽  
Moon‐Hyeong Seo ◽  
Vikash Kumar Yadav ◽  
Jouhyun Jeon ◽  
Satra Nim ◽  
...  

Author(s):  
Stefano Gianni ◽  
Per Jemth

Abstract Intrinsically disordered protein regions may fold upon binding to an interaction partner. It is often argued that such coupled binding and folding enables the combination of high specificity with low affinity. The basic tenet is that an unfavorable folding equilibrium will make the overall binding weaker while maintaining the interaction interface. While theoretically solid, we argue that this concept may be misleading for intrinsically disordered proteins. In fact, experimental evidence suggests that interactions of disordered regions usually involve extended conformations. In such cases, the disordered region is exceptionally unlikely to fold into a bound conformation in the absence of its binding partner. Instead, these disordered regions can bind to their partners in multiple different conformations and then fold into the native bound complex, thus, if anything, increasing the affinity through folding. We concede that (de)stabilization of native structural elements such as helices will modulate affinity, but this could work both ways, decreasing or increasing the stability of the complex. Moreover, experimental data show that intrinsically disordered binding regions display a range of affinities and specificities dictated by the particular side chains and length of the disordered region and not necessarily by the fact that they are disordered. We find it more likely that intrinsically disordered regions are common in protein–protein interactions because they increase the repertoire of binding partners, providing an accessible route to evolve interactions rather than providing a stability–affinity trade-off.


2014 ◽  
Vol 50 (40) ◽  
pp. 5245-5247 ◽  
Author(s):  
Hadar Amartely ◽  
Ahuvit David ◽  
Mario Lebendiker ◽  
Hadar Benyamini ◽  
Shai Izraeli ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier A. Iserte ◽  
Tamas Lazar ◽  
Silvio C. E. Tosatto ◽  
Peter Tompa ◽  
Cristina Marino-Buslje

Abstract Intrinsically disordered proteins/regions (IDPs/IDRs) are crucial components of the cell, they are highly abundant and participate ubiquitously in a wide range of biological functions, such as regulatory processes and cell signaling. Many of their important functions rely on protein interactions, by which they trigger or modulate different pathways. Sequence covariation, a powerful tool for protein contact prediction, has been applied successfully to predict protein structure and to identify protein–protein interactions mostly of globular proteins. IDPs/IDRs also mediate a plethora of protein–protein interactions, highlighting the importance of addressing sequence covariation-based inter-protein contact prediction of this class of proteins. Despite their importance, a systematic approach to analyze the covariation phenomena of intrinsically disordered proteins and their complexes is still missing. Here we carry out a comprehensive critical assessment of coevolution-based contact prediction in IDP/IDR complexes and detail the challenges and possible limitations that emerge from their analysis. We found that the coevolutionary signal is faint in most of the complexes of disordered proteins but positively correlates with the interface size and binding affinity between partners. In addition, we discuss the state-of-art methodology by biological interpretation of the results, formulate evaluation guidelines and suggest future directions of development to the field.


2020 ◽  
Vol 19 (7) ◽  
pp. 1070-1075 ◽  
Author(s):  
Katrina Meyer ◽  
Matthias Selbach

Protein-protein interactions are often mediated by short linear motifs (SLiMs) that are located in intrinsically disordered regions (IDRs) of proteins. Interactions mediated by SLiMs are notoriously difficult to study, and many functionally relevant interactions likely remain to be uncovered. Recently, pull-downs with synthetic peptides in combination with quantitative mass spectrometry emerged as a powerful screening approach to study protein-protein interactions mediated by SLiMs. Specifically, arrays of synthetic peptides immobilized on cellulose membranes provide a scalable means to identify the interaction partners of many peptides in parallel. In this minireview we briefly highlight the relevance of SLiMs for protein-protein interactions, outline existing screening technologies, discuss unique advantages of peptide-based interaction screens and provide practical suggestions for setting up such peptide-based screens.


2020 ◽  
Vol 1864 (8) ◽  
pp. 129618 ◽  
Author(s):  
Ilaria Genovese ◽  
Andrea Carotti ◽  
Andrea Ilari ◽  
Annarita Fiorillo ◽  
Theo Battista ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document