scholarly journals Implicit Laplacian of Enhanced Edge (ILEE): An unguided quantitative cytoskeletal imaging algorithm

2021 ◽  
Author(s):  
Pai Li ◽  
Ze Zhang ◽  
Brad Day ◽  
Yiying Tong

The eukaryotic cytoskeleton plays essential roles in cell signaling, trafficking, and motion. Recent work towards defining the temporal and spatial dynamics of cytoskeletal organization, including as a function of cell status, has utilized quantitative analysis of cytoskeletal fluorescence images as a standard approach to define cytoskeletal function. However, due to the uneven spatial distribution of the cytoskeleton, including varied shape and unstable binding efficiency to staining markers, these approaches may not segment cytoskeletal fractions accurately. Additionally, quantitative approaches currently suffer from human bias as well as information loss caused by z-axis projection of raw images. To overcome these obstacles, we developed Implicit Laplacian of Enhanced Edge (ILEE), a cytoskeletal component segmentation algorithm, which uses an 2D/3D-compatible, unguided local thresholding approach, therefore providing less biased and stable results. Empowered by ILEE, we constructed a Python based library for automated quantitative analysis of cytoskeleton images, which computes cytoskeletal indices that covers density, bundling, severing, branching, and directionality. Comparing to various classic approaches, ILEE library generates descriptive data with higher accuracy, robustness, and efficiency. In addition to the analysis described herein, we have developed an open-access ILEE library for community use.

2017 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

2021 ◽  
Vol 13 (6) ◽  
pp. 1180
Author(s):  
Da Guo ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Xinming Zhu ◽  
Yazhen Jiang ◽  
...  

The Hindu Kush Himalayan (HKH) region is one of the most ecologically vulnerable regions in the world. Several studies have been conducted on the dynamic changes of grassland in the HKH region, but few have considered grassland net ecosystem productivity (NEP). In this study, we quantitatively analyzed the temporal and spatial changes of NEP magnitude and the influence of climate factors on the HKH region from 2001 to 2018. The NEP magnitude was obtained by calculating the difference between the net primary production (NPP) estimated by the Carnegie–Ames Stanford Approach (CASA) model and the heterotrophic respiration (Rh) estimated by the geostatistical model. The results showed that the grassland ecosystem in the HKH region exhibited weak net carbon uptake with NEP values of 42.03 gC∙m−2∙yr−1, and the total net carbon sequestration was 0.077 Pg C. The distribution of NEP gradually increased from west to east, and in the Qinghai–Tibet Plateau, it gradually increased from northwest to southeast. The grassland carbon sources and sinks differed at different altitudes. The grassland was a carbon sink at 3000–5000 m, while grasslands below 3000 m and above 5000 m were carbon sources. Grassland NEP exhibited the strongest correlation with precipitation, and it had a lagging effect on precipitation. The correlation between NEP and the precipitation of the previous year was stronger than that of the current year. NEP was negatively correlated with temperature but not with solar radiation. The study of the temporal and spatial dynamics of NEP in the HKH region can provide a theoretical basis to help herders balance grazing and forage.


Zoology ◽  
2021 ◽  
pp. 125931
Author(s):  
R.P. Eusébio ◽  
H. Enghoff ◽  
A. Solodovnikov ◽  
A. Michelsen ◽  
P. Barranco ◽  
...  

2010 ◽  
Vol 128 (4) ◽  
pp. 473-482 ◽  
Author(s):  
Adalberto C. Café-Filho ◽  
Gil R. Santos ◽  
Francisco F. Laranjeira

Author(s):  
Nicolae Boboc ◽  
◽  
Valentina Munteanu ◽  

The high degree of land use in the Republic of Moldova as a whole, and the Cogâlnic river basin in particular, imposes the need to assess the quality of the environment and the characteristics of the anthropogenic pressure on the landscapes in temporal and spatial dynamics and to identifying an adequate of measure system for the purpose to maintain/restore the optimal structure and functioning of landscape systems. Based from the Land Cadastre on data, statistical data of population censuses, bibliographic and cartographic sources, a system, was appraised a system of indicators(of naturalness, of artificialization of landscapes, environmental changes) and quantified human pressure on the environment through agriculture and anthropogenic pressure on forest landscapes from the Cogâlnic catchment area. The values of the indices and the human pressure on the landscapes were processed using GIS techniques and elaborated cartographic models.


Sign in / Sign up

Export Citation Format

Share Document