scholarly journals Monocyte-derived transcriptome signature indicates antibody-dependent cellular 1 phagocytosis as the primary mechanism of vaccine-induced protection against HIV-1

2021 ◽  
Author(s):  
Shida Shangguan ◽  
Philip K Ehrenberg ◽  
Aviva Geretz ◽  
Lauren Yum ◽  
Gautam Kundu ◽  
...  

A gene signature previously correlated with mosaic adenovirus 26 vaccine protection in simian immunodeficiency virus (SIV) and SHIV challenge models in non-human primates (NHP). In this report we investigated presence of this signature as a correlate of reduced risk in human clinical trials and potential mechanism for protection. The absence of this gene signature in the DNA/rAd5 human vaccine trial which did not show efficacy, strengthens our hypothesis that this signature is only enriched in studies that demonstrated protection. This gene signature was enriched in the partially effective RV144 human trial that administered the ALVAC/protein vaccine, and we find that the signature associates with both decreased risk of HIV-1 acquisition and increased vaccine efficacy. Total RNA-seq in a clinical trial that used the same vaccine regimen as the RV144 HIV vaccine implicated antibody-dependent cellular phagocytosis (ADCP) as a potential mechanism of vaccine protection. CITE-seq profiling of 53 surface markers and transcriptomes of 53,777 single cells from the same trial, showed that genes in this signature were primarily expressed in cells belonging to the myeloid lineage including monocytes, which are major effector cells for ADCP. The consistent association of this transcriptome signature with vaccine efficacy represents a tool both to identify potential mechanisms, as with ADCP here, and to screen novel approaches to accelerate development of new vaccine candidates.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Shida Shangguan ◽  
Philip K Ehrenberg ◽  
Aviva Geretz ◽  
Lauren Yum ◽  
Gautam Kundu ◽  
...  

A gene signature was previously found to be correlated with mosaic adenovirus 26 vaccine protection in simian immunodeficiency virus and simian-human immunodeficiency virus challenge models in non-human primates. In this report, we investigated the presence of this signature as a correlate of reduced risk in human clinical trials and potential mechanisms of protection. The absence of this gene signature in the DNA/rAd5 human vaccine trial, which did not show efficacy, strengthens our hypothesis that this signature is only enriched in studies that demonstrated protection. This gene signature was enriched in the partially effective RV144 human trial that administered the ALVAC/protein vaccine, and we find that the signature associates with both decreased risk of HIV-1 acquisition and increased vaccine efficacy (VE). Total RNA-seq in a clinical trial that used the same vaccine regimen as the RV144 HIV vaccine implicated antibody-dependent cellular phagocytosis (ADCP) as a potential mechanism of vaccine protection. CITE-seq profiling of 53 surface markers and transcriptomes of 53,777 single cells from the same trial showed that genes in this signature were primarily expressed in cells belonging to the myeloid lineage, including monocytes, which are major effector cells for ADCP. The consistent association of this transcriptome signature with VE represents a tool both to identify potential mechanisms, as with ADCP here, and to screen novel approaches to accelerate the development of new vaccine candidates.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 526 ◽  
Author(s):  
Duerr ◽  
Gorny

Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
William D. Tolbert ◽  
Verna Van ◽  
Rebekah Sherburn ◽  
Marina Tuyishime ◽  
Fang Yan ◽  
...  

ABSTRACT Antibodies (Abs) specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (C1/C2) were induced in the RV144 vaccine trial, where antibody-dependent cellular cytotoxicity (ADCC) correlated with reduced risk of HIV-1 infection. We combined X-ray crystallography and fluorescence resonance energy transfer-fluorescence correlation spectroscopy to describe the molecular basis for epitopes of seven RV144 Abs and compared them to A32 and C11, C1/C2 Abs induced in HIV infection. Our data indicate that most vaccine Abs recognize the 7-stranded β-sandwich of gp120, a unique hybrid epitope bridging A32 and C11 binding sites. Although primarily directed at the 7-stranded β-sandwich, some accommodate the gp120 N terminus in C11-bound 8-stranded conformation and therefore recognize a broader range of CD4-triggered Env conformations. Our data also suggest that Abs of RV144 and RV305, the RV144 follow-up study, although likely initially induced by the ALVAC-HIV prime encoding full-length gp120, matured through boosting with truncated AIDSVAX gp120 variants. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) correlated with a reduced risk of infection from HIV-1 in the RV144 vaccine trial, the only HIV-1 vaccine trial to date to show any efficacy. Antibodies specific for CD4-induced envelope (Env) epitopes within constant region 1 and 2 (cluster A region) were induced in the RV144 trial and their ADCC activities were implicated in the vaccine efficacy. We present structural analyses of the antigen epitope targets of several RV144 antibodies specific for this region and C11, an antibody induced in natural infection, to show what the differences are in epitope specificities, mechanism of antigen recognition, and ADCC activities of antibodies induced by vaccination and during the course of HIV infection. Our data suggest that the truncated AIDSVAX gp120 variants used in the boost of the RV144 regimen may have shaped the vaccine response to this region, which could also have contributed to vaccine efficacy.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 82 ◽  
Author(s):  
Ralf Duerr ◽  
Miroslaw K. Gorny

Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.


2014 ◽  
Vol 88 (15) ◽  
pp. 8242-8255 ◽  
Author(s):  
A. J. Gartland ◽  
S. Li ◽  
J. McNevin ◽  
G. D. Tomaras ◽  
R. Gottardo ◽  
...  
Keyword(s):  

Vaccine ◽  
2000 ◽  
Vol 18 (17) ◽  
pp. 1793-1801 ◽  
Author(s):  
D.T O’Hagan ◽  
M Ugozzoli ◽  
J Barackman ◽  
M Singh ◽  
J Kazzaz ◽  
...  

2013 ◽  
Vol 7 (5) ◽  
pp. 987-999 ◽  
Author(s):  
Lorenza Mittempergher ◽  
Mahasti Saghatchian ◽  
Denise M. Wolf ◽  
Stefan Michiels ◽  
Sander Canisius ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document