scholarly journals Distribution-free complex hypothesis testing for single-cell RNA-seq differential expression analysis

2021 ◽  
Author(s):  
Marine Gauthier ◽  
Denis Agniel ◽  
Rodolphe Thiébaut ◽  
Boris P. Hejblum

State-of-the-art methods for single-cell RNA-seq (scRNA-seq) Differential Expression Analysis (DEA) often rely on strong distributional assumptions that are difficult to verify in practice. Furthermore, while the increasing complexity of clinical and biological single-cell studies calls for greater tool versatility, the majority of existing methods only tackle the comparison between two conditions. We propose a novel, distribution-free, and flexible approach to DEA for single-cell RNA-seq data. This new method, called ccdf, tests the association of each gene expression with one or many variables of interest (that can be either continuous or discrete), while potentially adjusting for additional covariates. To test such complex hypotheses, ccdf uses a conditional independence test relying on the conditional cumulative distribution function, estimated through multiple regressions. We provide the asymptotic distribution of the ccdf test statistic as well as a permutation test (when the number of observed cells is not sufficiently large). ccdf substantially expands the possibilities for scRNA-seq DEA studies: it obtains good statistical performance in various simulation scenarios considering complex experimental designs i.e. beyond the two condition comparison), while retaining competitive performance with state-of-the-art methods in a two-condition benchmark.

2016 ◽  
Author(s):  
Stefano Beretta ◽  
Yuri Pirola ◽  
Valeria Ranzani ◽  
Grazisa Rossetti ◽  
Raoul Bonnal ◽  
...  

MOTIVATION Long non-coding RNAs (lncRNAs) have recently gained interest, especially for their involvement in controlling several cell processes, but a full understanding of their role is lacking. Differential Expression (DE) analysis is one of the most important tasks in the analysis of RNA-seq data, since it potentially points out genes involved in the regulation of the condition under study. However, a classical analysis at gene level may disregard the role of Alternative Splicing (AS) in regulating cell conditions. This is the case, for example, when a given gene is expressed in all the different conditions, but the expressed isoform is significantly diverse in the different conditions (that is an isoform switch). A transcript level analysis may better shed light on this case, especially in studies having as goal, for example, a better understanding of the behavior of lncRNAs in lymphocytes T cells, which are fundamental in studies of specific diseases, such as cancer. After Cufflinks/Cuffdiff, several approaches for DE analysis at isoform/transcript level have been proposed. However, their results are often sensitive to the upstream analysis such as read mapping, transcript reconstruction and quantification, and it is often hard to choose "a priori" the most appropriate combination of tools. This work presents a tool for assisting the user in this choice, and poses the bases for a study devoted to the characterization of lncRNAs and the identification of of isoform switch events. Our tool includes a framework for the description and the execution of a set of DE pipelines over the same input dataset, as well a set of tools for reconciling and comparing the results. METHOD We designed an automated and easily customizable tool which is able to execute a set of existing pipelines for DE analysis at transcript level starting from RNA-seq data. Our method is built upon Snakemake, a workflow management system, with the specific goal of reducing the complexity of creating workflows. This approach guarantees that the experimentation is fully replicable and easy to customize. Each considered pipeline is structured in three steps: (i) transcript assembly, (ii) quantification, and (iii) DE analysis. By default, our tool builds and compares 9 different pipelines, each taking as input the same set of RNA-seq reads, obtained by combining different state-of-the-art methods to perform the transcript assembly (TA step) with different state-of-the-art methods to perform quantification and differential expression analysis (Q+DE step). More precisely, the 9 pipelines are obtained by combining two tools (Cufflinks and StringTie) and a Reference Annotation (Ensembl annotated transcripts) for the TA step, with three tools (Cuffquant+Cuffdiff, StringTie-B+Ballgown and Kallisto+Sleuth) for the Q+DE step. Abstract truncated at 3,000 characters - the full version is available in the pdf file


2018 ◽  
Author(s):  
Jesse M. Zhang ◽  
Govinda M. Kamath ◽  
David N. Tse

SummarySingle-cell computational pipelines involve two critical steps: organizing cells (clustering) and identifying the markers driving this organization (differential expression analysis). State-of-the-art pipelines perform differential analysis after clustering on the same dataset. We observe that because clustering forces separation, reusing the same dataset generates artificially low p-values and hence false discoveries. We introduce a valid post-clustering differential analysis framework which corrects for this problem. We provide software at https://github.com/jessemzhang/tn_test.


2016 ◽  
Author(s):  
Stefano Beretta ◽  
Yuri Pirola ◽  
Valeria Ranzani ◽  
Grazisa Rossetti ◽  
Raoul Bonnal ◽  
...  

MOTIVATION Long non-coding RNAs (lncRNAs) have recently gained interest, especially for their involvement in controlling several cell processes, but a full understanding of their role is lacking. Differential Expression (DE) analysis is one of the most important tasks in the analysis of RNA-seq data, since it potentially points out genes involved in the regulation of the condition under study. However, a classical analysis at gene level may disregard the role of Alternative Splicing (AS) in regulating cell conditions. This is the case, for example, when a given gene is expressed in all the different conditions, but the expressed isoform is significantly diverse in the different conditions (that is an isoform switch). A transcript level analysis may better shed light on this case, especially in studies having as goal, for example, a better understanding of the behavior of lncRNAs in lymphocytes T cells, which are fundamental in studies of specific diseases, such as cancer. After Cufflinks/Cuffdiff, several approaches for DE analysis at isoform/transcript level have been proposed. However, their results are often sensitive to the upstream analysis such as read mapping, transcript reconstruction and quantification, and it is often hard to choose "a priori" the most appropriate combination of tools. This work presents a tool for assisting the user in this choice, and poses the bases for a study devoted to the characterization of lncRNAs and the identification of of isoform switch events. Our tool includes a framework for the description and the execution of a set of DE pipelines over the same input dataset, as well a set of tools for reconciling and comparing the results. METHOD We designed an automated and easily customizable tool which is able to execute a set of existing pipelines for DE analysis at transcript level starting from RNA-seq data. Our method is built upon Snakemake, a workflow management system, with the specific goal of reducing the complexity of creating workflows. This approach guarantees that the experimentation is fully replicable and easy to customize. Each considered pipeline is structured in three steps: (i) transcript assembly, (ii) quantification, and (iii) DE analysis. By default, our tool builds and compares 9 different pipelines, each taking as input the same set of RNA-seq reads, obtained by combining different state-of-the-art methods to perform the transcript assembly (TA step) with different state-of-the-art methods to perform quantification and differential expression analysis (Q+DE step). More precisely, the 9 pipelines are obtained by combining two tools (Cufflinks and StringTie) and a Reference Annotation (Ensembl annotated transcripts) for the TA step, with three tools (Cuffquant+Cuffdiff, StringTie-B+Ballgown and Kallisto+Sleuth) for the Q+DE step. Abstract truncated at 3,000 characters - the full version is available in the pdf file


2018 ◽  
Vol 34 (19) ◽  
pp. 3340-3348 ◽  
Author(s):  
Zhijin Wu ◽  
Yi Zhang ◽  
Michael L Stitzel ◽  
Hao Wu

2017 ◽  
Author(s):  
Charlotte Soneson ◽  
Mark D. Robinson

AbstractBackgroundAs single-cell RNA-seq (scRNA-seq) is becoming increasingly common, the amount of publicly available data grows rapidly, generating a useful resource for computational method development and extension of published results. Although processed data matrices are typically made available in public repositories, the procedure to obtain these varies widely between data sets, which may complicate reuse and cross-data set comparison. Moreover, while many statistical methods for performing differential expression analysis of scRNA-seq data are becoming available, their relative merits and the performance compared to methods developed for bulk RNA-seq data are not sufficiently well understood.ResultsWe present conquer, a collection of consistently processed, analysis-ready public single-cell RNA-seq data sets. Each data set has count and transcripts per million (TPM) estimates for genes and transcripts, as well as quality control and exploratory analysis reports. We use a subset of the data sets available in conquer to perform an extensive evaluation of the performance and characteristics of statistical methods for differential gene expression analysis, evaluating a total of 30 statistical approaches on both experimental and simulated scRNA-seq data.ConclusionsConsiderable differences are found between the methods in terms of the number and characteristics of the genes that are called differentially expressed. Pre-filtering of lowly expressed genes can have important effects on the results, particularly for some of the methods originally developed for analysis of bulk RNA-seq data. Generally, however, methods developed for bulk RNA-seq analysis do not perform notably worse than those developed specifically for scRNA-seq.


2017 ◽  
Author(s):  
Koen Van den Berge ◽  
Charlotte Soneson ◽  
Michael I. Love ◽  
Mark D. Robinson ◽  
Lieven Clement

AbstractDropout in single cell RNA-seq (scRNA-seq) applications causes many transcripts to go undetected. It induces excess zero counts, which leads to power issues in differential expression (DE) analysis and has triggered the development of bespoke scRNA-seq DE tools that cope with zero-inflation. Recent evaluations, however, have shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We introduce zingeR, a zero-inflated negative binomial model that identifies excess zero counts and generates observation weights to unlock bulk RNA-seq pipelines for zero-inflation, boosting performance in scRNA-seq differential expression analysis.


2021 ◽  
Author(s):  
Mengqi Zhang ◽  
Si Liu ◽  
Zhen Miao ◽  
Fang Han ◽  
Raphael Gottardo ◽  
...  

Bulk RNA-seq data quantify the expression of a gene in an individual by one number (e.g., fragment count). In contrast, single cell RNA-seq (scRNA-seq) data provide much richer information: the distribution of gene expression across many cells. To assess differential expression across individuals using scRNA-seq data, a straightforward solution is to create ''pseudo'' bulk RNA-seq data by adding up the fragment counts of a gene across cells for each individual, and then apply methods designed for differential expression using bulk RNA-seq data. This pseudo-bulk solution reduces the distribution of gene expression across cells to a single number and thus loses a good amount of information. We propose to assess differential expression using the gene expression distribution measured by cell level data. We find denoising cell level data can substantially improve the power of this approach. We apply our method, named IDEAS (Individual level Differential Expression Analysis for scRNA-seq), to study the gene expression difference between autism subjects and controls. We find neurogranin-expressing neurons harbor a high proportion of differentially expressed genes, and ERBB signals in microglia are associated with autism.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthew Chung ◽  
Vincent M. Bruno ◽  
David A. Rasko ◽  
Christina A. Cuomo ◽  
José F. Muñoz ◽  
...  

AbstractAdvances in transcriptome sequencing allow for simultaneous interrogation of differentially expressed genes from multiple species originating from a single RNA sample, termed dual or multi-species transcriptomics. Compared to single-species differential expression analysis, the design of multi-species differential expression experiments must account for the relative abundances of each organism of interest within the sample, often requiring enrichment methods and yielding differences in total read counts across samples. The analysis of multi-species transcriptomics datasets requires modifications to the alignment, quantification, and downstream analysis steps compared to the single-species analysis pipelines. We describe best practices for multi-species transcriptomics and differential gene expression.


Sign in / Sign up

Export Citation Format

Share Document