scholarly journals Topographically organized representation of space and context in the medial prefrontal cortex

2021 ◽  
Author(s):  
Jonas-Frederic Sauer ◽  
Marlene Bartos

Spatial tuning of pyramidal cells has been observed in diverse neocortical regions, but a systematic characterization of the properties of spatially tuned neurons across cortical layers and regions is lacking. Using mice navigating through virtual environments, we find topographical organizational principles for the representation of spatial features in the medial prefrontal cortex. We show that spatial tuning emerges across layers with a dorso-ventral gradient in the depth of spatial tuning, which resides in superficial layers. Moreover, the prefrontal cortex shows hemispheric lateralization of spatial tuning such that neurons located in the left hemisphere display more pronounced spatial tuning. During exploration of a novel compared to a familiar context, a different picture emerges. Context discrimination and familiarity detection is higher in superficial compared to deep layers. However, neurons of the right medial prefrontal cortex discriminate more efficiently between contexts than cells in the left hemisphere. Jointly, these results reveal a complex topographic organization of spatial representation and suggest a division of labor among prefrontal layers and subregions in the encoding of spatial position in the current environment and context discrimination.

2016 ◽  
Vol 93 (1) ◽  
pp. 128-138 ◽  
Author(s):  
Zulhaini Sartika A. Pulungan ◽  
Zaenal Muttaqien Sofro ◽  
Ginus Partadiredja

2001 ◽  
Vol 13 (1) ◽  
pp. 72-89 ◽  
Author(s):  
Apostolos P. Georgopoulos ◽  
Kenneth Whang ◽  
Maria-Alexandra Georgopoulos ◽  
Georgios A. Tagaris ◽  
Bagrat Amirikian ◽  
...  

We studied the brain activation patterns in two visual image processing tasks requiring judgements on object construction (FIT task) or object sameness (SAME task). Eight right-handed healthy human subjects (four women and four men) performed the two tasks in a randomized block design while 5-mm, multislice functional images of the whole brain were acquired using a 4-tesla system using blood oxygenation dependent (BOLD) activation. Pairs of objects were picked randomly from a set of 25 oriented fragments of a square and presented to the subjects approximately every 5 sec. In the FIT task, subjects had to indicate, by pushing one of two buttons, whether the two fragments could match to form a perfect square, whereas in the SAME task they had to decide whether they were the same or not. In a control task, preceding and following each of the two tasks above, a single square was presented at the same rate and subjects pushed any of the two keys at random. Functional activation maps were constructed based on a combination of conservative criteria. The areas with activated pixels were identified using Talairach coordinates and anatomical landmarks, and the number of activated pixels was determined for each area. Altogether, 379 pixels were activated. The counts of activated pixels did not differ significantly between the two tasks or between the two genders. However, there were significantly more activated pixels in the left (n = 218) than the right side of the brain (n = 161). Of the 379 activated pixels, 371 were located in the cerebral cortex. The Talairach coordinates of these pixels were analyzed with respect to their overall distribution in the two tasks. These distributions differed significantly between the two tasks. With respect to individual dimensions, the two tasks differed significantly in the anterior-posterior and superior-inferior distributions but not in the left-right (including mediolateral, within the left or right side) distribution. Specifically, the FIT distribution was, overall, more anterior and inferior than that of the SAME task. A detailed analysis of the counts and spatial distributions of activated pixels was carried out for 15 brain areas (all in the cerebral cortex) in which a consistent activation (in ≥ 3 subjects) was observed (n = 323 activated pixels). We found the following. Except for the inferior temporal gyrus, which was activated exclusively in the FIT task, all other areas showed activation in both tasks but to different extents. Based on the extent of activation, areas fell within two distinct groups (FIT or SAME) depending on which pixel count (i.e., FIT or SAME) was greater. The FIT group consisted of the following areas, in decreasing FIT/SAME order (brackets indicate ties): GTi, GTs, GC, GFi, GFd, [GTm, GF], GO. The SAME group consisted of the following areas, in decreasing SAME/FIT order: GOi, LPs, Sca, GPrC, GPoC, [GFs, GFm]. These results indicate that there are distributed, graded, and partially overlapping patterns of activation during performance of the two tasks. We attribute these overlapping patterns of activation to the engagement of partially shared processes. Activated pixels clustered to three types of clusters: FIT-only (111 pixels), SAME-only (97 pixels), and FIT + SAME (115 pixels). Pixels contained in FIT-only and SAME-only clusters were distributed approximately equally between the left and right hemispheres, whereas pixels in the SAME + FIT clusters were located mostly in the left hemisphere. With respect to gender, the left-right distribution of activated pixels was very similar in women and men for the SAME-only and FIT + SAME clusters but differed for the FIT-only case in which there was a prominent left side preponderance for women, in contrast to a right side preponderance for men. We conclude that (a) cortical mechanisms common for processing visual object construction and discrimination involve mostly the left hemisphere, (b) cortical mechanisms specific for these tasks engage both hemispheres, and (c) in object construction only, men engage predominantly the right hemisphere whereas women show a left-hemisphere preponderance.


2020 ◽  
Author(s):  
Paul Faulkner ◽  
Susanna Lucini Paioni ◽  
Petya Kozhuharova ◽  
Natasza Orlov ◽  
David J. Lythgoe ◽  
...  

AbstractCigarette smoking is still the largest contributor to disease and death worldwide. Successful cessation is hindered by decreases in prefrontal glutamate concentrations and gray matter volume due to daily smoking. Because non-daily, intermittent smoking also contributes greatly to disease and death, understanding whether infrequent tobacco use is associated with reductions in prefrontal glutamate concentrations and gray matter volume may aid public health. Eighty-five young participants (41 non-smokers, 24 intermittent smokers, 20 daily smokers, mean age ~23 years old), underwent 1H-magnetic resonance spectroscopy of the medial prefrontal cortex, as well as structural MRI to determine whole-brain gray matter volume. Compared to non-smokers, both daily and intermittent smokers exhibited lower concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol in the medial prefrontal cortex, and lower gray matter volume in the right inferior frontal gyrus; these measures of prefrontal metabolites and structure did not differ between daily and intermittent smokers. Finally, medial prefrontal metabolite concentrations and right inferior frontal gray matter volume were positively correlated, but these relationships were not influenced by smoking status. This study provides the first evidence that both daily and intermittent smoking are associated with low concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol, and low gray matter volume in the prefrontal cortex. Future tobacco cessation efforts should not ignore potential deleterious effects of intermittent smoking by considering only daily smokers. Finally, because low glutamate concentrations hinder cessation, treatments that can normalize tonic levels of prefrontal glutamate, such as N-acetylcysteine, may help intermittent and daily smokers to quit.


2020 ◽  
Author(s):  
Leon Fodoulian ◽  
Olivier Gschwend ◽  
Chieko Huber ◽  
Sophie Mutel ◽  
Rodrigo F. Salazar ◽  
...  

SUMMARYIn various mental disorders, dysfunction of the prefrontal cortex contributes to cognitive deficits. Here we studied how the claustrum (CLA), a nucleus sharing reciprocal connections with the cortex, may participate in these cognitive impairments. We show that specific ensembles of CLA and of medial prefrontal cortex (mPFC) neurons are activated during a task requiring cognitive control such as attentional set-shifting, i.e. the ability to shift attention towards newly relevant stimulus-reward associations while disengaging from irrelevant ones. CLA neurons exert a direct excitatory input on mPFC pyramidal cells, and chemogenetic inhibition of CLA neurons suppresses the formation of specific mPFC assemblies during attentional set-shifting. Furthermore, impairing the recruitment of specific CLA assemblies through opto/chemogenetic manipulations prevents attentional set-shifting. In conclusion, we propose that the CLA controls the reorganization of mPFC ensembles to enable attentional set-shifting, emphasizing a potential role of the CLA-mPFC network in attentional dysfunctions.


Sign in / Sign up

Export Citation Format

Share Document