scholarly journals Contributions of distinct auditory cortical inhibitory neuron types to the detection of sounds in background noise

2021 ◽  
Author(s):  
Anna Andreevna Lakunina ◽  
Nadav Menashe ◽  
Santiago Jaramillo

The ability to separate background noise from relevant acoustic signals is essential for appropriate sound-driven behavior in natural environments. Examples of this separation are apparent in the auditory system, where neural responses to behaviorally relevant stimuli become increasingly noise-invariant along the ascending auditory pathway. However, the mechanisms that underlie this reduction in responses to background noise are not well understood. To address this gap in knowledge, we first evaluated the effects of auditory cortical inactivation on mice of both sexes trained to perform a simple auditory signal-in-noise detection task, and found that outputs from the auditory cortex are important for the detection of auditory stimuli in noisy environments. Next, we evaluated the contributions of the two most common cortical inhibitory cell types, parvalbumin-expressing (PV+) and somatostatin-expressing (SOM+) interneurons, to the perception of masked auditory stimuli. We found that inactivation of either PV+ or SOM+ cells resulted in a reduction in the ability of mice to determine the presence of auditory stimuli masked by noise. These results indicate that a disruption of auditory cortical network dynamics by either of these two types of inhibitory cells is sufficient to impair the ability to separate acoustic signals from noise.

2021 ◽  
Author(s):  
Maansi Desai ◽  
Jade Holder ◽  
Cassandra Villarreal ◽  
Nat Clark ◽  
Liberty S. Hamilton

AbstractIn natural conversations, listeners must attend to what others are saying while ignoring extraneous background sounds. Recent studies have used encoding models to predict electroencephalography (EEG) responses to speech in noise-free listening situations, sometimes referred to as “speech tracking” in EEG. Researchers have analyzed how speech tracking changes with different types of background noise. It is unclear, however, whether neural responses from noisy and naturalistic environments can be generalized to more controlled stimuli. If encoding models for noisy, naturalistic stimuli are generalizable to other tasks, this could aid in data collection from populations who may not tolerate listening to more controlled, less-engaging stimuli for long periods of time. We recorded non-invasive scalp EEG while participants listened to speech without noise and audiovisual speech stimuli containing overlapping speakers and background sounds. We fit multivariate temporal receptive field (mTRF) encoding models to predict EEG responses to pitch, the acoustic envelope, phonological features, and visual cues in both noise-free and noisy stimulus conditions. Our results suggested that neural responses to naturalistic stimuli were generalizable to more controlled data sets. EEG responses to speech in isolation were predicted accurately using phonological features alone, while responses to noisy speech were more accurate when including both phonological and acoustic features. These findings may inform basic science research on speech-in-noise processing. Ultimately, they may also provide insight into auditory processing in people who are hard of hearing, who use a combination of audio and visual cues to understand speech in the presence of noise.Significance StatementUnderstanding spoken language in natural environments requires listeners to parse acoustic and linguistic information in the presence of other distracting stimuli. However, most studies of auditory processing rely on highly controlled stimuli with no background noise, or with background noise inserted at specific times. Here, we compare models where EEG data are predicted based on a combination of acoustic, phonetic, and visual features in highly disparate stimuli – sentences from a speech corpus, and speech embedded within movie trailers. We show that modeling neural responses to highly noisy, audiovisual movies can uncover tuning for acoustic and phonetic information that generalizes to simpler stimuli typically used in sensory neuroscience experiments.


Author(s):  
Fred Y. Shen ◽  
Margaret M. Harrington ◽  
Logan A. Walker ◽  
Hon Pong Jimmy Cheng ◽  
Edward S. Boyden ◽  
...  

AbstractMapping neuroanatomy is a foundational goal towards understanding brain function. Electron microscopy (EM) has been the gold standard for connectivity analysis because nanoscale resolution is necessary to unambiguously resolve chemical and electrical synapses. However, molecular information that specifies cell types is often lost in EM reconstructions. To address this, we devised a light microscopy approach for connectivity analysis of defined cell types called spectral connectomics. We combined multicolor genetic labeling (Brainbow) of neurons with a multi-round immunostaining Expansion Microscopy (miriEx) strategy to simultaneously interrogate morphology, molecular markers, and connectivity in the same brain section. We applied our multimodal profiling strategy to directly link inhibitory neuron cell types with their network morphologies. Furthermore, we showed that correlative Brainbow and endogenous synaptic machinery immunostaining can be used to define putative synaptic connections between spectrally unique neurons, as well as map putative inhibitory and excitatory inputs. We envision that spectral connectomics can be applied routinely in neurobiology labs to gain insights into normal and pathophysiological neuroanatomy across multiple animals and time points.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142093233
Author(s):  
Ying Zhang ◽  
Wendong Li ◽  
Yonghe Yu ◽  
Ya Xiao ◽  
Dongyu Xu ◽  
...  

The underwater environment is extremely complex and variable, which makes it difficult for underwater robots detecting or recognizing surroundings using images acquired with cameras. Ghost imaging as a new imaging technique has attracted much attention due to its special physical properties and potential for imaging of objects in optically harsh or noisy environments. In this work, we experimentally study three categories of image reconstruction methods of ghost imaging for objects of different transmittance. For high-transmittance objects, the differential ghost imaging is more efficient than traditional ghost imaging. However, for low-transmittance objects, the reconstructed images using traditional ghost imaging and differential ghost imaging algorithms are both exceedingly blurred and cannot be improved by increasing the number of measurements. A compressive sensing method named augmented Lagrangian and alternating direction algorithm (TVAL3) is proposed to reduce the background noise imposed by the low-transmittance. Experimental results show that compressive ghost imaging can dramatically subtract the background noise and enhance the contrast of the image. The relationship between the quality of the reconstructed image and the complexity of object itself is also discussed.


2020 ◽  
Vol 117 (45) ◽  
pp. 28442-28451
Author(s):  
Monzilur Rahman ◽  
Ben D. B. Willmore ◽  
Andrew J. King ◽  
Nicol S. Harper

Sounds are processed by the ear and central auditory pathway. These processing steps are biologically complex, and many aspects of the transformation from sound waveforms to cortical response remain unclear. To understand this transformation, we combined models of the auditory periphery with various encoding models to predict auditory cortical responses to natural sounds. The cochlear models ranged from detailed biophysical simulations of the cochlea and auditory nerve to simple spectrogram-like approximations of the information processing in these structures. For three different stimulus sets, we tested the capacity of these models to predict the time course of single-unit neural responses recorded in ferret primary auditory cortex. We found that simple models based on a log-spaced spectrogram with approximately logarithmic compression perform similarly to the best-performing biophysically detailed models of the auditory periphery, and more consistently well over diverse natural and synthetic sounds. Furthermore, we demonstrated that including approximations of the three categories of auditory nerve fiber in these simple models can substantially improve prediction, particularly when combined with a network encoding model. Our findings imply that the properties of the auditory periphery and central pathway may together result in a simpler than expected functional transformation from ear to cortex. Thus, much of the detailed biological complexity seen in the auditory periphery does not appear to be important for understanding the cortical representation of sound.


2019 ◽  
Vol 32 (4-5) ◽  
pp. 275-318 ◽  
Author(s):  
Charles Spence ◽  
Felipe Reinoso-Carvalho ◽  
Carlos Velasco ◽  
Qian Janice Wang

Abstract Food product-extrinsic sounds (i.e., those auditory stimuli that are not linked directly to a food or beverage product, or its packaging) have been shown to exert a significant influence over various aspects of food perception and consumer behaviour, often operating outside of conscious awareness. In this review, we summarise the latest evidence concerning the various ways in which what we hear can influence what we taste. According to one line of empirical research, background noise interferes with tasting, due to attentional distraction. A separate body of marketing-relevant research demonstrates that music can be used to bias consumers’ food perception, judgments, and purchasing/consumption behaviour in various ways. Some of these effects appear to be driven by the arousal elicited by loud music as well as the entrainment of people’s behaviour to the musical beat. However, semantic priming effects linked to the type and style of music are also relevant. Another route by which music influences food perception comes from the observation that our liking/preference for the music that we happen to be listening to carries over to influence our hedonic judgments of what we are tasting. A final route by which hearing influences tasting relates to the emerging field of ‘sonic seasoning’. A developing body of research now demonstrates that people often rate tasting experiences differently when listening to soundtracks that have been designed to be (or are chosen because they are) congruent with specific flavour experiences (e.g., when compared to when listening to other soundtracks, or else when tasting in silence). Taken together, such results lead to the growing realization that the crossmodal influences of music and noise on food perception and consumer behaviour may have some important if, as yet, unrecognized implications for public health.


1992 ◽  
Vol 36 (3) ◽  
pp. 247-247
Author(s):  
Ellen C. Haas

Auditory perception involves the human listener's awareness or apprehension of auditory stimuli in the environment. Auditory stimuli, which include speech communications as well as non-speech signals, occur in the presence and absence of environmental noise. Non-speech auditory signals range from simple pure tones to complex signals found in three-dimensional auditory displays. Special hearing protection device (HPD) designs, as well as additions to conventional protectors, have been developed to improve speech communication and auditory perception capabilities of those exposed to noise. The thoughtful design of auditory stimuli and the proper design, selection, and use of HPDs within the environment can improve human performance and reduce accidents. The purpose of this symposium will be to discuss issues in auditory perception and to describe methods to improve the perception of auditory stimuli in environments with and without noise. The issues of interest include the perception of non-speech auditory signals and the improvement of auditory perception capabilities of persons exposed to noise. The first three papers of this symposium describe the perception of non-speech auditory signals. Ellen Haas defines the extent to which certain signal elements affect the perceived urgency of auditory warning signals. Michael D. Good and Dr. Robert H. Gilkey investigate free-field masking as a function of the spatial separation between signal and masker sounds within the horizontal and median planes. Jeffrey M. Gerth explores the discrimination of complex auditory signal components that differ by sound category, temporal pattern, density, and component manipulation. The fourth paper of this symposium focuses upon the improvement of auditory perception capabilities of persons exposed to hazardous noise, and who must wear hearing protection. Special HPD designs, as well as additions to conventional protectors, have been developed to improve speech communication and auditory perception capabilities of persons exposed to noise. Dr. John G. Casali reviews several new HPD technologies and describes construction features, empirical performance data, and applications of each device. These papers illustrate current research issues in the perception of auditory signals. The issues are all relevant to the human factors engineering of auditory signals and personal protective gear. The perception of auditory stimuli can be improved by the thoughtful human factors design of auditory stimuli and by the proper use of HPDs.


Author(s):  
Pengchao Chen ◽  
Yongjun Cai ◽  
Dongjie Tan ◽  
Yi Sun ◽  
Muyang Ai ◽  
...  

This paper describes a new acoustic pre-warning system for pipelines, aimed at preventing third party damage by monitoring the pipeline acoustic signals. Many environmental factors, such as the by-passing of vehicles and pedestrians, could introduce background noise into long distance transmission of pipeline acoustic signals. As a result, normal pipeline acoustic pre-warning system is disturbed to identify abnormal events. In this work, statistical methods were applied to signal analysis in order to extract feature parameters of different events. Then the optimal feature subset was obtained by gene arithmetic to differentiate hazardous events between normal events effectively. PetroChina has applied the new pre-warning system to their long distance transmission pipelines and the system operates well.


Sign in / Sign up

Export Citation Format

Share Document