scholarly journals IUCNN - deep learning approaches to approximate species' extinction risk

2021 ◽  
Author(s):  
Alexander Zizka ◽  
Tobias Andermann ◽  
Daniele Silvestro

Aim: The global Red List (RL) from the International Union for the Conservation of Nature is the most comprehensive global quantification of extinction risk, and widely used in applied conservation as well as in biogeographic and ecological research. Yet, due to the time-consuming assessment process, the RL is biased taxonomically and geographically, which limits its application on large scales, in particular for understudied areas such as the tropics, or understudied taxa, such as most plants and invertebrates. Here we present IUCNN, an R-package implementing deep learning models to predict species RL status from publicly available geographic occurrence records (and other traits if available). Innovation: We implement a user-friendly workflow to train and validate neural network models, and subsequently use them to predict species RL status. IUCNN contains functions to address specific issues related to the RL framework, including a regression-based approach to account for the ordinal nature of RL categories and class imbalance in the training data, a Bayesian approach for improved uncertainty quantification, and a target accuracy threshold approach that limits predictions to only those species whose RL status can be predicted with high confidence. Most analyses can be run with few lines of code, without prior knowledge of neural network models. We demonstrate the use of IUCNN on an empirical dataset of ~14,000 orchid species, for which IUCNN models can predict extinction risk within minutes, while outperforming comparable methods. Main conclusions: IUCNN harnesses innovative methodology to estimate the RL status of large numbers of species. By providing estimates of the number and identity of threatened species in custom geographic or taxonomic datasets, IUCNN enables large-scale analyses on the extinction risk of species so far not well represented on the official RL.

Author(s):  
Ying Qu ◽  
Hairong Qi ◽  
Chiman Kwan

There are two mast cameras (Mastcam) onboard the Mars rover Curiosity. Both Mastcams are multispectral imagers with nine bands in each. The right Mastcam has three times higher resolution than the left. In this chapter, we apply some recently developed deep neural network models to enhance the left Mastcam images with help from the right Mastcam images. Actual Mastcam images were used to demonstrate the performance of the proposed algorithms.


Author(s):  
Yuheng Hu ◽  
Yili Hong

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (social media–based hyperlocal event detection and recommendation), an end-to-end neural event detection and recommendation framework with a particular use case for Twitter to facilitate residents’ information seeking of hyperlocal events. The key model innovation in SHEDR lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, the convolutional neural network (CNN) and long short-term memory (LSTM), in a novel joint CNN-LSTM model to characterize spatiotemporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pairwise ranking algorithm for recommending detected hyperlocal events to residents based on their interests. To alleviate the sparsity issue and improve personalization, our algorithm incorporates several types of contextual information covering topic, social, and geographical proximities. We perform comprehensive evaluations based on two large-scale data sets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our framework in comparison with several state-of-the-art approaches. We show that our hyperlocal event detection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores. Summary of Contribution: In this paper, we focus on a novel and important, yet largely underexplored application of computing—how to improve civic engagement in local neighborhoods via local news sharing and consumption based on social media feeds. To address this question, we propose two new computational and data-driven methods: (1) a deep learning–based hyperlocal event detection algorithm that scans spatially and temporally to detect hyperlocal events from geotagged Twitter feeds; and (2) A personalized deep learning–based hyperlocal event recommender system that systematically integrates several contextual cues such as topical, geographical, and social proximity to recommend the detected hyperlocal events to potential users. We conduct a series of experiments to examine our proposed models. The outcomes demonstrate that our algorithms are significantly better than the state-of-the-art models and can provide users with more relevant information about the local neighborhoods that they live in, which in turn may boost their community engagement.


2021 ◽  
pp. 188-198

The innovations in advanced information technologies has led to rapid delivery and sharing of multimedia data like images and videos. The digital steganography offers ability to secure communication and imperative for internet. The image steganography is essential to preserve confidential information of security applications. The secret image is embedded within pixels. The embedding of secret message is done by applied with S-UNIWARD and WOW steganography. Hidden messages are reveled using steganalysis. The exploration of research interests focused on conventional fields and recent technological fields of steganalysis. This paper devises Convolutional neural network models for steganalysis. Convolutional neural network (CNN) is one of the most frequently used deep learning techniques. The Convolutional neural network is used to extract spatio-temporal information or features and classification. We have compared steganalysis outcome with AlexNet and SRNeT with same dataset. The stegnalytic error rates are compared with different payloads.


1997 ◽  
pp. 931-935 ◽  
Author(s):  
Anders Lansner ◽  
Örjan Ekeberg ◽  
Erik Fransén ◽  
Per Hammarlund ◽  
Tomas Wilhelmsson

2021 ◽  
Vol 13 (19) ◽  
pp. 3859
Author(s):  
Joby M. Prince Czarnecki ◽  
Sathishkumar Samiappan ◽  
Meilun Zhou ◽  
Cary Daniel McCraine ◽  
Louis L. Wasson

The radiometric quality of remotely sensed imagery is crucial for precision agriculture applications because estimations of plant health rely on the underlying quality. Sky conditions, and specifically shadowing from clouds, are critical determinants in the quality of images that can be obtained from low-altitude sensing platforms. In this work, we first compare common deep learning approaches to classify sky conditions with regard to cloud shadows in agricultural fields using a visible spectrum camera. We then develop an artificial-intelligence-based edge computing system to fully automate the classification process. Training data consisting of 100 oblique angle images of the sky were provided to a convolutional neural network and two deep residual neural networks (ResNet18 and ResNet34) to facilitate learning two classes, namely (1) good image quality expected, and (2) degraded image quality expected. The expectation of quality stemmed from the sky condition (i.e., density, coverage, and thickness of clouds) present at the time of the image capture. These networks were tested using a set of 13,000 images. Our results demonstrated that ResNet18 and ResNet34 classifiers produced better classification accuracy when compared to a convolutional neural network classifier. The best overall accuracy was obtained by ResNet34, which was 92% accurate, with a Kappa statistic of 0.77. These results demonstrate a low-cost solution to quality control for future autonomous farming systems that will operate without human intervention and supervision.


2021 ◽  
Author(s):  
Pengfei Zuo ◽  
Yu Hua ◽  
Ling Liang ◽  
Xinfeng Xie ◽  
Xing Hu ◽  
...  

2000 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
Mihir Sen ◽  
Rodney L. McClain

Abstract In the current study we consider the problem of accuracy in heat rate estimations from artificial neural network models of heat exchangers used for refrigeration applications. The network configuration is of the feedforward type with a sigmoid activation function and a backpropagation algorithm. Limited experimental measurements from a manufacturer are used to show the capability of the neural network technique in modeling the heat transfer in these systems. Results from this exercise show that a well-trained network correlates the data with errors of the same order as the uncertainty of the measurements. It is also shown that the number and distribution of the training data are linked to the performance of the network when estimating the heat rates under different operating conditions, and that networks trained from few tests may give large errors. A methodology based on the cross-validation technique is presented to find regions where not enough data are available to construct a reliable neural network. The results from three tests show that the proposed methodology gives an upper bound of the estimated error in the heat rates.


2020 ◽  
Vol 147 (3) ◽  
pp. 1834-1841 ◽  
Author(s):  
Ming Zhong ◽  
Manuel Castellote ◽  
Rahul Dodhia ◽  
Juan Lavista Ferres ◽  
Mandy Keogh ◽  
...  

Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Tao Chen ◽  
Mingfen Wu ◽  
Hexi Li

Abstract The automatic extraction of meaningful relations from biomedical literature or clinical records is crucial in various biomedical applications. Most of the current deep learning approaches for medical relation extraction require large-scale training data to prevent overfitting of the training model. We propose using a pre-trained model and a fine-tuning technique to improve these approaches without additional time-consuming human labeling. Firstly, we show the architecture of Bidirectional Encoder Representations from Transformers (BERT), an approach for pre-training a model on large-scale unstructured text. We then combine BERT with a one-dimensional convolutional neural network (1d-CNN) to fine-tune the pre-trained model for relation extraction. Extensive experiments on three datasets, namely the BioCreative V chemical disease relation corpus, traditional Chinese medicine literature corpus and i2b2 2012 temporal relation challenge corpus, show that the proposed approach achieves state-of-the-art results (giving a relative improvement of 22.2, 7.77, and 38.5% in F1 score, respectively, compared with a traditional 1d-CNN classifier). The source code is available at https://github.com/chentao1999/MedicalRelationExtraction.


Sign in / Sign up

Export Citation Format

Share Document