Recent Advances in Image Restoration with Applications to Real World Problems
Latest Publications


TOTAL DOCUMENTS

8
(FIVE YEARS 8)

H-INDEX

0
(FIVE YEARS 0)

Published By Intechopen

9781839683558, 9781839683565

Author(s):  
Hessah Albanwan ◽  
Rongjun Qin

Remote sensing images and techniques are powerful tools to investigate earth’s surface. Data quality is the key to enhance remote sensing applications and obtaining clear and noise-free set of data is very difficult in most situations due to the varying acquisition (e.g., atmosphere and season), sensor and platform (e.g., satellite angles and sensor characteristics) conditions. With the increasing development of satellites, nowadays Terabytes of remote sensing images can be acquired every day. Therefore, information and data fusion can be particularly important in the remote sensing community. The fusion integrates data from various sources acquired asynchronously for information extraction, analysis, and quality improvement. In this chapter, we aim to discuss the theory of spatiotemporal fusion by investigating previous works, in addition to describing the basic concepts and some of its applications by summarizing our prior and ongoing works.


Author(s):  
Mohammad Shahab Uddin ◽  
Jiang Li

Deep learning models are data driven. For example, the most popular convolutional neural network (CNN) model used for image classification or object detection requires large labeled databases for training to achieve competitive performances. This requirement is not difficult to be satisfied in the visible domain since there are lots of labeled video and image databases available nowadays. However, given the less popularity of infrared (IR) camera, the availability of labeled infrared videos or image databases is limited. Therefore, training deep learning models in infrared domain is still challenging. In this chapter, we applied the pix2pix generative adversarial network (Pix2Pix GAN) and cycle-consistent GAN (Cycle GAN) models to convert visible videos to infrared videos. The Pix2Pix GAN model requires visible-infrared image pairs for training while the Cycle GAN relaxes this constraint and requires only unpaired images from both domains. We applied the two models to an open-source database where visible and infrared videos provided by the signal multimedia and telecommunications laboratory at the Federal University of Rio de Janeiro. We evaluated conversion results by performance metrics including Inception Score (IS), Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Our experiments suggest that cycle-consistent GAN is more effective than pix2pix GAN for generating IR images from optical images.


Author(s):  
Ying Qu ◽  
Hairong Qi ◽  
Chiman Kwan

There are two mast cameras (Mastcam) onboard the Mars rover Curiosity. Both Mastcams are multispectral imagers with nine bands in each. The right Mastcam has three times higher resolution than the left. In this chapter, we apply some recently developed deep neural network models to enhance the left Mastcam images with help from the right Mastcam images. Actual Mastcam images were used to demonstrate the performance of the proposed algorithms.


Author(s):  
Rongjun Qin ◽  
Shuang Song ◽  
Xiao Ling ◽  
Mostafa Elhashash

3D recovery from multi-stereo and stereo images, as an important application of the image-based perspective geometry, serves many applications in computer vision, remote sensing, and Geomatics. In this chapter, the authors utilize the imaging geometry and present approaches that perform 3D reconstruction from cross-view images that are drastically different in their viewpoints. We introduce our project work that takes ground-view images and satellite images for full 3D recovery, which includes necessary methods in satellite and ground-based point cloud generation from images, 3D data co-registration, fusion, and mesh generation. We demonstrate our proposed framework on a dataset consisting of twelve satellite images and 150 k video frames acquired through a vehicle-mounted Go-pro camera and demonstrate the reconstruction results. We have also compared our results with results generated from an intuitive processing pipeline that involves typical geo-registration and meshing methods.


Author(s):  
Ahmed Cheikh Sidiya ◽  
Xin Li

Face image synthesis has advanced rapidly in recent years. However, similar success has not been witnessed in related areas such as face single image super-resolution (SISR). The performance of SISR on real-world low-quality face images remains unsatisfactory. In this paper, we demonstrate how to advance the state-of-the-art in face SISR by leveraging style-based generator in unsupervised settings. For real-world low-resolution (LR) face images, we propose a novel unsupervised learning approach by combining style-based generator with relativistic discriminator. With a carefully designed training strategy, we demonstrate our converges faster and better suppresses artifacts than Bulat’s approach. When trained on an ensemble of high-quality datasets (CelebA, AFLW, LS3D-W, and VGGFace2), we report significant visual quality improvements over other competing methods especially for real-world low-quality face images such as those in Widerface. Additionally, we have verified that both our unsupervised approaches are capable of improving the matching performance of widely used face recognition systems such as OpenFace.


Author(s):  
Chiman Kwan ◽  
David Gribben ◽  
Bulent Ayhan ◽  
Jude Larkin

In some applications such as construction planning and land surveying, an accurate digital terrain model (DTM) is essential. However, in urban and sub-urban areas, the terrain may be covered by trees and man-made structures. Although digital surface model (DSM) obtained by radar or LiDAR can provide a general idea of the terrain, the presence of trees, buildings, etc. conceals the actual terrain elevation. Normally, the process of extracting DTM involves a land cover classification followed by a trimming step that removes the elevation due to trees and buildings. In this chapter, we assume the land cover types have been classified and we focus on the use of image inpainting algorithms for DTM generation. That is, for buildings and trees, we remove those pixels from the DSM and then apply inpainting techniques to reconstruct the terrain pixels in those areas. A dataset with DSM and hyperspectral data near the U. Houston area was used in our study. The DTM from United States Geological Survey (USGS) was used as the ground truth. Objective evaluation results indicate that some inpainting methods perform better than others.


Author(s):  
Rocco Restaino ◽  
Gemine Vivone ◽  
Paolo Addesso ◽  
Daniele Picone ◽  
Jocelyn Chanussot

Multi-platform data introduce new possibilities in the context of data fusion, as they allow to exploit several remotely sensed images acquired by different combinations of sensors. This scenario is particularly interesting for the sharpening of hyperspectral (HS) images, due to the limited availability of high-resolution (HR) sensors mounted onboard of the same platform as that of the HS device. However, the differences in the acquisition geometry and the nonsimultaneity of this kind of observations introduce further difficulties whose effects have to be taken into account in the design of data fusion algorithms. In this study, we present the most widespread HS image sharpening techniques and assess their performances by testing them over real acquisitions taken by the Earth Observing-1 (EO-1) and the WorldView-3 (WV3) satellites. We also highlight the difficulties arising from the use of multi-platform data and, at the same time, the benefits achievable through this approach.


Sign in / Sign up

Export Citation Format

Share Document