scholarly journals PET imaging studies to investigate functional expression of mGluR2 using [11C]mG2P001

2021 ◽  
Author(s):  
Gengyang Yuan ◽  
Maeva Dhaynaut ◽  
Nicolas J Guehl ◽  
Neelamegam Ramesh ◽  
Sung-Hyun Moon ◽  
...  

Metabotropic glutamate receptor 2 (mGluR2) has been extensively studied for the treatment of various neurological and psychiatric disorders. Understanding of the mGluR2 function is pivotal in supporting the drug discovery targeting mGluR2. Herein, the positive allosteric modulation of mGluR2 was investigated via the in vivo positron emission tomography (PET) imaging using 2-((4-(2-[11C]methoxy-4-(trifluoromethyl)phenyl)piperidin-1-yl)methyl)-1-methyl-1H-imidazo[4,5-b]pyridine ([11C]mG2P001).Distinct from the orthosteric compounds, pretreatment with the unlabeled mG2P001, a potent mGluR2 positive allosteric modulator (PAM), resulted in a significant increase instead of decrease of the [11C]mG2P001 accumulation in rat brain detected by PET imaging. Subsequent in vitro studies with [3H]mG2P001 revealed the cooperative binding mechanism of mG2P001 with glutamate and its pharmacological effect that contributed to the enhanced binding of [3H]mG2P001 in transfected CHO cells expressing mGluR2. The in vivo PET imaging and quantitative analysis of [11C]mG2P001 in non-human primates (NHPs) further validated the characteristics of [11C]mG2P001 as an imaging ligand for mGluR2. Self-blocking studies in primates enhanced accumulation of [11C]mG2P001 dose- and delivery-dependently. Altogether, these studies show that [11C]mG2P001 is a sensitive biomarker for mGluR2 expression and the binding is affected by the tissue glutamate concentration.

2021 ◽  
Author(s):  
Gengyang Yuan ◽  
Maeva Dhaynaut ◽  
Yu Lan ◽  
Nicolas J Guehl ◽  
Dalena Huynh ◽  
...  

Metabotropic glutamate receptor 2 (mGluR2) is a therapeutic target for the treatment of several neuropsychiatric disorders and conditions. The role of mGluR2 function in etiology could be unveiled by in vivo imaging using positron emission tomography (PET). In this regard, 5-(2-fluoro-4-[11C]methoxyphenyl)-2,2-dimethyl-3,4-dihydro-2H-pyrano[2,3-b]pyridine-7-carboxamide ([11C]13), a potent negative allosteric modulator (NAM), was developed to support this endeavor. Radioligand [11C]13 was synthesized via the O-[11C]methylation of phenol 24 with a high molar activity of 212 ± 76 GBq/µmol (n = 5) and excellent radiochemical purity (> 99%). PET imaging of [11C]13 in rats demonstrated its superior brain heterogeneity, particularly in the regions of striatum, thalamus, hippocampus, and cortex. Accumulation of [11C]13 in these regions of interest (ROIs) was reduced with pretreatment of mGluR2 NAMs, VU6001966 (9) and MNI-137 (26), the extent of which revealed a time-dependent drug effect of the blocking agents. In a nonhuman primate, [11C]13 selectively accumulated in mGluR2-rich regions, especially in different cortical areas, putamen, thalamus, and hippocampus, and resulted in high-contrast brain images. The regional total volume of distribution (VT) estimates of [11C]13 decreased by 14% after the pretreatment with 9. Therefore, [11C]13 is a potential candidate for translational PET imaging studies of mGluR2 function.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


2019 ◽  
Vol 22 (4) ◽  
pp. 854-863 ◽  
Author(s):  
Daniele Bertoglio ◽  
Jeroen Verhaeghe ◽  
Špela Korat ◽  
Alan Miranda ◽  
Leonie wyffels ◽  
...  

Abstract Purpose This study aimed at investigating binding specificity, suitability of reference region-based kinetic modelling, and pharmacokinetics of the metabotropic glutamate receptor 1 (mGluR1) radioligand [11C]ITDM in mice. Procedures We performed in vivo blocking as well as displacement of [11C]ITDM during positron emission tomography (PET) imaging using the specific mGluR1 antagonist YM-202074. Additionally, we assessed in vitro blocking of [3H]ITDM at two different doses of YM-202074. As an alternative to reference region models, we validated the use of a noninvasive image-derived input function (IDIF) compared to an arterial input function measured with an invasive arteriovenous (AV) shunt using a population-based curve for radiometabolite correction and characterized the pharmacokinetic modelling of [11C]ITDM in the mouse brain. Finally, we also assessed semi-quantitative approaches. Results In vivo blocking with YM-202074 resulted in a decreased [11C]ITDM binding, ranging from − 35.8 ± 8.0 % in pons to − 65.8 ± 3.0 % in thalamus. Displacement was also markedly observed in all tested regions. In addition, in vitro [3H]ITDM binding could be blocked in a dose-dependent manner. The volume of distribution (VT) based on the noninvasive IDIF (VT (IDIF)) showed excellent agreement with the VT values based on the metabolite-corrected plasma input function regardless of the metabolite correction (r2 > 0.943, p < 0.0001). Two-tissue compartmental model (2TCM) was found to be the preferred model and showed optimal agreement with Logan plot (r2 > 0.960, p < 0.0001). A minimum scan duration of 80 min was required for proper parameter estimation. SUV was not reliable (r2 = 0.379, p = 0.0011), unlike the SUV ratio to the SUV of the input function, which showed to be a valid approach. Conclusions No suitable reference region could be identified for [11C]ITDM as strongly supported by in vivo and in vitro evidence of specific binding in all brain regions. However, by applying appropriate kinetic models, [11C]ITDM PET imaging represents a promising tool to visualize mGluR1 in the mouse brain.


2020 ◽  
Vol 57 (4) ◽  
pp. 2038-2047 ◽  
Author(s):  
Daniele Bertoglio ◽  
Jeroen Verhaeghe ◽  
Špela Korat ◽  
Alan Miranda ◽  
Klaudia Cybulska ◽  
...  

AbstractImpairment of group I metabotropic glutamate receptors (mGluRs) results in altered glutamate signalling, which is associated with several neurological disorders including Huntington’s Disease (HD), an autosomal neurodegenerative disease. In this study, we assessed in vivo pathological changes in mGluR1 availability in the Q175DN mouse model of HD using longitudinal positron emission tomography (PET) imaging with the radioligand [11C]ITDM. Ninety-minute dynamic PET imaging scans were performed in 22 heterozygous (HET) Q175DN mice and 22 wild-type (WT) littermates longitudinally at 6, 12, and 16 months of age. Analyses of regional volume of distribution with an image-derived input function (VT (IDIF)) and voxel-wise parametric VT (IDIF) maps were performed to assess differences between genotypes. Post-mortem evaluation at 16 months was done to support in vivo findings. [11C]ITDM VT (IDIF) quantification revealed higher mGluR1 availability in the brain of HET mice compared to WT littermates (e.g. cerebellum: + 15.0%, + 17.9%, and + 17.6% at 6, 12, and 16 months, respectively; p < 0.001). In addition, an age-related decline in [11C]ITDM binding independent of genotype was observed between 6 and 12 months. Voxel-wise analysis of parametric maps and post-mortem quantifications confirmed the elevated mGluR1 availability in HET mice compared to WT littermates. In conclusion, in vivo measurement of mGluR1 availability using longitudinal [11C]ITDM PET imaging demonstrated higher [11C]ITDM binding in extra-striatal brain regions during the course of disease in the Q175DN mouse model.


2018 ◽  
Vol 61 (6) ◽  
pp. 2278-2291 ◽  
Author(s):  
Ran Cheng ◽  
Wakana Mori ◽  
Longle Ma ◽  
Mireille Alhouayek ◽  
Akiko Hatori ◽  
...  

2017 ◽  
Vol 37 (3) ◽  
pp. 1163-1178 ◽  
Author(s):  
Geraldine Pottier ◽  
Vanessa Gómez-Vallejo ◽  
Daniel Padro ◽  
Raphaël Boisgard ◽  
Frédéric Dollé ◽  
...  

Cannabinoid type 2 receptors (CB2R) have emerged as promising targets for the diagnosis and therapy of brain pathologies. However, no suitable radiotracers for accurate CB2R mapping have been found to date, limiting the investigation of the CB2 receptor expression using positron emission tomography (PET) imaging. In this work, we report the evaluation of the in vivo expression of CB2R with [11C]A-836339 PET after cerebral ischemia and in two rat models of neuroinflammation, first by intrastriatal LPS and then by AMPA injection. PET images and in vitro autoradiography showed a lack of specific [11C]A-836339 uptake in these animal models demonstrating the limitation of this radiotracer to image CB2 receptor under neuroinflammatory conditions. Further, using immunohistochemistry, the CB2 receptor displayed a modest expression increase after cerebral ischemia, LPS and AMPA models. Finally, [18F]DPA-714-PET and immunohistochemistry demonstrated decreased neuroinflammation by a selective CB2R agonist, JWH133. Taken together, these findings suggest that [11C]A-836339 is not a suitable radiotracer to monitor in vivo CB2R expression by using PET imaging. Future studies will have to investigate alternative radiotracers that could provide an accurate binding to CB2 receptors following brain inflammation.


Sign in / Sign up

Export Citation Format

Share Document