scholarly journals PyLipID: A Python package for analysis of protein-lipid interactions from MD simulations

2021 ◽  
Author(s):  
Wanling Song ◽  
Robin A. Corey ◽  
Bertie Ansell ◽  
Keith Cassidy ◽  
Michael Horrell ◽  
...  

Lipids play important modulatory and structural roles for membrane proteins. Molecular dynamics simulations are frequently used to provide insights into the nature of these protein-lipid interactions. Systematic comparative analysis requires tools that provide algorithms for objective assessment of such interactions. We introduce PyLipID, a python package for the identification and characterization of specific lipid interactions and binding sites on membrane proteins from molecular dynamics simulations. PyLipID uses a community analysis approach for binding site detection, calculating lipid residence times for both the individual protein residues and the detected binding sites. To assist structural analysis, PyLipID produces representative bound lipid poses from simulation data, using a density-based scoring function. To estimate residue contacts robustly, PyLipID uses a dual-cutoff scheme to differentiate between lipid conformational rearrangements whilst bound from full dissociation events. In addition to the characterization of protein-lipid interactions, PyLipID is applicable to analysis of the interactions of membrane proteins with other ligands. By combining automated analysis, efficient algorithms, and open-source distribution, PyLipID facilitates the systematic analysis of lipid interactions from large simulation datasets of multiple species of membrane proteins.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tone Bengtsen ◽  
Viktor L Holm ◽  
Lisbeth Ravnkilde Kjølbye ◽  
Søren R Midtgaard ◽  
Nicolai Tidemand Johansen ◽  
...  

Nanodiscs are membrane mimetics that consist of a protein belt surrounding a lipid bilayer, and are broadly used for characterization of membrane proteins. Here, we investigate the structure, dynamics and biophysical properties of two small nanodiscs, MSP1D1ΔH5 and ΔH4H5. We combine our SAXS and SANS experiments with molecular dynamics simulations and previously obtained NMR and EPR data to derive and validate a conformational ensemble that represents the structure and dynamics of the nanodisc. We find that it displays conformational heterogeneity with various elliptical shapes, and with substantial differences in lipid ordering in the centre and rim of the discs. Together, our results reconcile previous apparently conflicting observations about the shape of nanodiscs, and pave the way for future integrative studies of larger complex systems such as membrane proteins embedded in nanodiscs.


2019 ◽  
Author(s):  
Tone Bengtsen ◽  
Viktor L. Holm ◽  
Lisbeth Ravnkilde Kjølbye ◽  
Søren R. Midtgaard ◽  
Nicolai Tidemand Johansen ◽  
...  

AbstractNanodiscs are membrane mimetics that consist of a protein belt surrounding a lipid bilayer, and are broadly used for characterization of membrane proteins. Here, we investigate the structure, dynamics and biophysical properties of two small nanodiscs, MSP1D1ΔH5 and ΔH4H5. We combine our SAXS and SANS experiments with molecular dynamics simulations and previously obtained NMR and EPR data to derive and validate a conformational ensemble that represents the structure and dynamics of the nanodisc. We find that it displays conformational heterogeneity with various elliptical shapes, and with substantial differences in lipid ordering in the centre and rim of the discs. Together, our results reconcile previous apparently con2icting observations about the shape of nanodiscs, and paves the way for future integrative studies of larger complex systems such as membrane proteins embedded in nanodiscs.


Sign in / Sign up

Export Citation Format

Share Document