scholarly journals Learning predictive cognitive maps with spiking neurons during behaviour and replays

2021 ◽  
Author(s):  
Jacopo Bono ◽  
Sara Zannone ◽  
Victor Pedrosa ◽  
Claudia Clopath

AbstractWe describe a framework where a biologically plausible spiking neural network mimicking hippocampal layers learns a cognitive map known as the successor representation. We show analytically how, on the algorithmic level, the learning follows the TD(λ) algorithm, which emerges from the underlying spike-timing dependent plasticity rule. We then analyze the implications of this framework, uncovering how behavioural activity and experience replays can play complementary roles when learning the representation of the environment, how we can learn relations over behavioural timescales with synaptic plasticity acting on the range of milliseconds, and how the learned representation can be flexibly encoded by allowing state-dependent delay discounting through neuromodulation and altered firing rates.

2010 ◽  
Vol 22 (8) ◽  
pp. 2059-2085 ◽  
Author(s):  
Daniel Bush ◽  
Andrew Philippides ◽  
Phil Husbands ◽  
Michael O'Shea

Rate-coded Hebbian learning, as characterized by the BCM formulation, is an established computational model of synaptic plasticity. Recently it has been demonstrated that changes in the strength of synapses in vivo can also depend explicitly on the relative timing of pre- and postsynaptic firing. Computational modeling of this spike-timing-dependent plasticity (STDP) has demonstrated that it can provide inherent stability or competition based on local synaptic variables. However, it has also been demonstrated that these properties rely on synaptic weights being either depressed or unchanged by an increase in mean stochastic firing rates, which directly contradicts empirical data. Several analytical studies have addressed this apparent dichotomy and identified conditions under which distinct and disparate STDP rules can be reconciled with rate-coded Hebbian learning. The aim of this research is to verify, unify, and expand on these previous findings by manipulating each element of a standard computational STDP model in turn. This allows us to identify the conditions under which this plasticity rule can replicate experimental data obtained using both rate and temporal stimulation protocols in a spiking recurrent neural network. Our results describe how the relative scale of mean synaptic weights and their dependence on stochastic pre- or postsynaptic firing rates can be manipulated by adjusting the exact profile of the asymmetric learning window and temporal restrictions on spike pair interactions respectively. These findings imply that previously disparate models of rate-coded autoassociative learning and temporally coded heteroassociative learning, mediated by symmetric and asymmetric connections respectively, can be implemented in a single network using a single plasticity rule. However, we also demonstrate that forms of STDP that can be reconciled with rate-coded Hebbian learning do not generate inherent synaptic competition, and thus some additional mechanism is required to guarantee long-term input-output selectivity.


2021 ◽  
Vol 12 (03) ◽  
pp. 25-33
Author(s):  
Mario Antoine Aoun

We compare the number of states of a Spiking Neural Network (SNN) composed from chaotic spiking neurons versus the number of states of a SNN composed from regular spiking neurons while both SNNs implementing a Spike Timing Dependent Plasticity (STDP) rule that we created. We find out that this STDP rule favors chaotic spiking since the number of states is larger in the chaotic SNN than the regular SNN. This chaotic favorability is not general; it is exclusive to this STDP rule only. This research falls under our long-term investigation of STDP and chaos theory.


In this paper spiking neural network (SNN) is presented which can discriminate odor data. Spike timing dependent synaptic plasticity (STDP) means a plasticity which is controlled by the presynaptic and postsynaptic spikes time difference. Using this STDP rule the synaptic weights are modified after the mitral and before the cortical cells. In order to determine whether the circuit has correctly identified the odor the SNN has either a high or a low response at the output for any odor given as the input.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1065
Author(s):  
Moshe Bensimon ◽  
Shlomo Greenberg ◽  
Moshe Haiut

This work presents a new approach based on a spiking neural network for sound preprocessing and classification. The proposed approach is biologically inspired by the biological neuron’s characteristic using spiking neurons, and Spike-Timing-Dependent Plasticity (STDP)-based learning rule. We propose a biologically plausible sound classification framework that uses a Spiking Neural Network (SNN) for detecting the embedded frequencies contained within an acoustic signal. This work also demonstrates an efficient hardware implementation of the SNN network based on the low-power Spike Continuous Time Neuron (SCTN). The proposed sound classification framework suggests direct Pulse Density Modulation (PDM) interfacing of the acoustic sensor with the SCTN-based network avoiding the usage of costly digital-to-analog conversions. This paper presents a new connectivity approach applied to Spiking Neuron (SN)-based neural networks. We suggest considering the SCTN neuron as a basic building block in the design of programmable analog electronics circuits. Usually, a neuron is used as a repeated modular element in any neural network structure, and the connectivity between the neurons located at different layers is well defined. Thus, generating a modular Neural Network structure composed of several layers with full or partial connectivity. The proposed approach suggests controlling the behavior of the spiking neurons, and applying smart connectivity to enable the design of simple analog circuits based on SNN. Unlike existing NN-based solutions for which the preprocessing phase is carried out using analog circuits and analog-to-digital conversion, we suggest integrating the preprocessing phase into the network. This approach allows referring to the basic SCTN as an analog module enabling the design of simple analog circuits based on SNN with unique inter-connections between the neurons. The efficiency of the proposed approach is demonstrated by implementing SCTN-based resonators for sound feature extraction and classification. The proposed SCTN-based sound classification approach demonstrates a classification accuracy of 98.73% using the Real-World Computing Partnership (RWCP) database.


2021 ◽  
Vol 23 (6) ◽  
pp. 317-326
Author(s):  
E.A. Ryndin ◽  
◽  
N.V. Andreeva ◽  
V.V. Luchinin ◽  
K.S. Goncharov ◽  
...  

In the current era, design and development of artificial neural networks exploiting the architecture of the human brain have evolved rapidly. Artificial neural networks effectively solve a wide range of common for artificial intelligence tasks involving data classification and recognition, prediction, forecasting and adaptive control of object behavior. Biologically inspired underlying principles of ANN operation have certain advantages over the conventional von Neumann architecture including unsupervised learning, architectural flexibility and adaptability to environmental change and high performance under significantly reduced power consumption due to heavy parallel and asynchronous data processing. In this paper, we present the circuit design of main functional blocks (neurons and synapses) intended for hardware implementation of a perceptron-based feedforward spiking neural network. As the third generation of artificial neural networks, spiking neural networks perform data processing utilizing spikes, which are discrete events (or functions) that take place at points in time. Neurons in spiking neural networks initiate precisely timing spikes and communicate with each other via spikes transmitted through synaptic connections or synapses with adaptable scalable weight. One of the prospective approach to emulate the synaptic behavior in hardware implemented spiking neural networks is to use non-volatile memory devices with analog conduction modulation (or memristive structures). Here we propose a circuit design for functional analogues of memristive structure to mimic a synaptic plasticity, pre- and postsynaptic neurons which could be used for developing circuit design of spiking neural network architectures with different training algorithms including spike-timing dependent plasticity learning rule. Two different circuits of electronic synapse were developed. The first one is an analog synapse with photoresistive optocoupler used to ensure the tunable conductivity for synaptic plasticity emulation. While the second one is a digital synapse, in which the synaptic weight is stored in a digital code with its direct conversion into conductivity (without digital-to-analog converter andphotoresistive optocoupler). The results of the prototyping of developed circuits for electronic analogues of synapses, pre- and postsynaptic neurons and the study of transient processes are presented. The developed approach could provide a basis for ASIC design of spiking neural networks based on CMOS (complementary metal oxide semiconductor) design technology.


2021 ◽  
Vol 14 ◽  
Author(s):  
Xueyuan She ◽  
Saurabh Dash ◽  
Daehyun Kim ◽  
Saibal Mukhopadhyay

This paper introduces a heterogeneous spiking neural network (H-SNN) as a novel, feedforward SNN structure capable of learning complex spatiotemporal patterns with spike-timing-dependent plasticity (STDP) based unsupervised training. Within H-SNN, hierarchical spatial and temporal patterns are constructed with convolution connections and memory pathways containing spiking neurons with different dynamics. We demonstrate analytically the formation of long and short term memory in H-SNN and distinct response functions of memory pathways. In simulation, the network is tested on visual input of moving objects to simultaneously predict for object class and motion dynamics. Results show that H-SNN achieves prediction accuracy on similar or higher level than supervised deep neural networks (DNN). Compared to SNN trained with back-propagation, H-SNN effectively utilizes STDP to learn spatiotemporal patterns that have better generalizability to unknown motion and/or object classes encountered during inference. In addition, the improved performance is achieved with 6x fewer parameters than complex DNNs, showing H-SNN as an efficient approach for applications with constrained computation resources.


Author(s):  
D T Pham ◽  
M S Packianather ◽  
E Y A Charles

This paper focuses on the architecture and learning algorithm associated with using a new self-organizing delay adaptation spiking neural network model for clustering control chart patterns. This temporal coding spiking neural network model employs a Hebbian-based rule to shift the connection delays instead of the previous approaches of delay selection. Here the tuned delays compensate the differences in the input firing times of temporal patterns and enables them to coincide. The coincidence detection capability of the spiking neuron has been utilized for pattern clustering. The structure of the network is similar to that of a Kohonen self-organizing map (SOM) except that the output layer neurons are coincidence detecting spiking neurons. An input pattern is represented by the neuron that is the first to fire among all the competing spiking neurons. Clusters within the input data are identified with the location of the winning neurons and their firing times. The proposed self-organized delay adaptation spiking neural network (SODA_SNN) has been utilized to cluster control chart patterns. The trained network obtained an average clustering accuracy of 96.1 per cent on previously unseen test data. This was achieved with a network of 8 × 8 spiking neurons trained for 20 epochs containing 1000 training examples. The improvement in clustering accuracy achieved by the proposed SODA_SNN on the unseen test data was twice as much as that on the training data when compared to the SOM.


Sign in / Sign up

Export Citation Format

Share Document