scholarly journals Subsurface Hydrocarbon Degradation Strategies in Low- and High-Sulfate Coal Seam Communities Identified with Activity-Based Metagenomics

2021 ◽  
Author(s):  
Hannah Doris Schweitzer ◽  
Heidi J Smith ◽  
Elliott P Barnhart ◽  
Luke J McKay ◽  
Robin Gerlach ◽  
...  

Environmentally relevant metagenomes and BONCAT-FACS derived translationally active metagenomes from Powder River Basin coal seams were investigated to elucidate potential genes and functional groups involved in hydrocarbon degradation to methane in coal seams with high- and low-sulfate levels. An advanced subsurface environmental sampler allowed the establishment of coal-associated microbial communities under in situ conditions for metagenomic analyses from environmental and translationally active populations. Metagenomic sequencing demonstrated that biosurfactants, aerobic dioxygenases, and anaerobic phenol degradation pathways were present in active populations across the sampled redox gradient. In particular, results suggested the importance of anaerobic degradation pathways under high-sulfate conditions with an emphasis on fumarate addition. Under low-sulfate conditions, a mixture of both aerobic and anaerobic pathways were observed but with a predominance of aerobic dioxygenases. The putative low-molecular weight biosurfactant, lichysein, appeared to play a more important role compared to rhamnolipids. The novel methods used in this study-- subsurface environmental samplers in combination with metagenomic sequencing of both translationally active metagenomes and environmental genomes-- offer a deeper and environmentally relevant perspective on community genetic potential from coal seams poised at different redox potentials broadening the understanding of degradation strategies for subsurface carbon.

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157201
Author(s):  
Sang-Yeop Lee ◽  
Gun-Hwa Kim ◽  
Sung Ho Yun ◽  
Chi-Won Choi ◽  
Yoon-Sun Yi ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0154233 ◽  
Author(s):  
Sang-Yeop Lee ◽  
Gun-Hwa Kim ◽  
Sung Ho Yun ◽  
Chi-Won Choi ◽  
Yoon-Sun Yi ◽  
...  

2020 ◽  
Author(s):  
Chuwen Zhang ◽  
Rainer U. Meckenstock ◽  
Shengze Weng ◽  
Guangshan Wei ◽  
Casey R.J. Hubert ◽  
...  

Abstract Background: Marine sediments can contain large amounts of alkanes and methylated aromatic hydrocarbons that are introduced by natural processes or anthropogenic activities. These compounds can be biodegraded by anaerobic microorganisms via enzymatic addition of fumarate. Previous gene- and genome-based surveys have detected ubiquitous and novel fumarate-adding enzymes (FAE), but these were neither confirmed as occurring within full degradation pathways nor affiliated with known organisms. The identity and ecological roles of a significant fraction of anaerobic hydrocarbon degraders in marine sediments therefore remains unknown.Results: By combining phylogenetic reconstructions, protein homolog modelling, and functional profiling of publicly available and newly sequenced metagenomes and genomes, 61 draft bacterial and archaeal genomes encoding anaerobic hydrocarbon degradation via fumarate addition were obtained. Besides Deltaproteobacteria that are well-known to catalyze these reactions, Chloroflexi are dominant FAE-encoding bacteria in hydrocarbon-impacted sediments, potentially coupling sulfate reduction or fermentation to anaerobic hydrocarbon degradation. Among Archaea, besides Archaeoglobi previously shown to have this capability, genomes of Heimdallarchaeota, Lokiarchaeota, Thorarchaeota and Thermoplasmata also suggest fermentative hydrocarbon degradation using archaea-type FAE. The biogeography survey reveals these bacterial and archaeal hydrocarbon degraders occur in a wide range of marine sediments, including high abundances of FAE-encoding Asgard archaea associated with natural seeps and subseafloor ecosystems.Conclusions: Our results expand the knowledge of novel microbial lineages engaged in anaerobic degradation of alkanes and methylated aromatic hydrocarbons, and shed new light on the importance of marine sedimentary archaea in hydrocarbon degradation.


2021 ◽  
Author(s):  
Varada Khot ◽  
Jackie Zorz ◽  
Daniel A Gittins ◽  
Anirban Chakraborty ◽  
Emma Bell ◽  
...  

Discovery of microbial hydrocarbon degradation pathways has traditionally relied on laboratory isolation and characterization of microorganisms. Although many metabolic pathways for hydrocarbon degradation have been discovered, the absence of tools dedicated to their annotation makes it difficult to identify the relevant genes and predict the hydrocarbon degradation potential of microbial genomes and metagenomes. Furthermore, sequence homology between hydrocarbon degradation genes and genes with other functions often results in misannotation. A tool that systematically identifies hydrocarbon metabolic potential is therefore needed. We present the Calgary approach to ANnoTating HYDrocarbon degradation genes (CANT-HYD), a database containing HMMs of 37 marker genes involved in anaerobic and aerobic degradation pathways of aliphatic and aromatic hydrocarbons. Using this database, we show that hydrocarbon metabolic potential is widespread in the tree of life and identify understudied or overlooked hydrocarbon degradation potential in many phyla. We also demonstrate scalability by analyzing large metagenomic datasets for the prediction of hydrocarbon utilization in diverse environments. To the best of our knowledge, CANT-HYD is the first comprehensive tool for robust and accurate identification of marker genes associated with aerobic and anaerobic hydrocarbon degradation.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 55-65 ◽  
Author(s):  
T. Kobayashi ◽  
T. Hashinaga ◽  
E. Mikami ◽  
T. Suzuki

Anaerobic phenol and benzoate degrading consortia were cultivated by acclimation of methanogenic sludges to be capable of degrading completely to CO2 and CH4 1,000 mg/l of phenol within 5–7 days, and 3,000 mg/l of benzoate within 5–7 days, respectively. By using the acclimated sludges, the effect of gaseous atmospheres (H2:CO2/80:20 and N2:CO2/80:20) on the biodegradability and the degradation pathways of phenol and benzoate were examined. Although the anaerobic degradation of phenol was accelerated in the H2/CO2 atmosphere compared with the N2/CO2 atmosphere, benzoate was accumulated. Degradations of benzoate and butyrate were inhibited in the H2/CO2 atmosphere under stirred conditions, but not under static conditions. Through a series of biodegradation tests by using several intermediates in phenol degradation reported previously, the anaerobic degradation pathway of phenol in the N2/CO2 atmosphere was suggested to be phenol → benzoate → cyclohexane carboxylate (or 1-cyclohexene carboxylate) → fatty acids → CO2,CH4.


Sign in / Sign up

Export Citation Format

Share Document