hydrocarbon degradation
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 108)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Varada Khot ◽  
Jackie Zorz ◽  
Daniel A. Gittins ◽  
Anirban Chakraborty ◽  
Emma Bell ◽  
...  

Many pathways for hydrocarbon degradation have been discovered, yet there are no dedicated tools to identify and predict the hydrocarbon degradation potential of microbial genomes and metagenomes. Here we present the Calgary approach to ANnoTating HYDrocarbon degradation genes (CANT-HYD), a database of 37 HMMs of marker genes involved in anaerobic and aerobic degradation pathways of aliphatic and aromatic hydrocarbons. Using this database, we identify understudied or overlooked hydrocarbon degradation potential in many phyla. We also demonstrate its application in analyzing high-throughput sequence data by predicting hydrocarbon utilization in large metagenomic datasets from diverse environments. CANT-HYD is available at https://github.com/dgittins/CANT-HYD-HydrocarbonBiodegradation.


Nature ◽  
2021 ◽  
Author(s):  
Zhuo Zhou ◽  
Cui-jing Zhang ◽  
Peng-fei Liu ◽  
Lin Fu ◽  
Rafael Laso-Pérez ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher R. Marks ◽  
Kathleen E. Duncan ◽  
Mark A. Nanny ◽  
Brian H. Harriman ◽  
Recep Avci ◽  
...  

AbstractNaval vessels regularly mix fuel and seawater as ballast, a practice that might exacerbate fuel biodegradation and metal biocorrosion. To investigate, a metagenomic characterization and metabolite profiling of ballast from U.S. Navy vessels with residence times of 1-, ~20-, and 31 weeks was conducted and compared with the seawater used to fill the tanks. Aerobic Gammaproteobacteria differentially proliferated in the youngest ballast tank and aerobic-specific hydrocarbon degradation genes were quantitatively more important compared to seawater or the other ballast tanks. In contrast, the anaerobic Deltaproteobacteria dominated in the eldest ballast fluid with anaerobic-specific hydrocarbon activation genes being far more prominent. Gene activity was corroborated by detection of diagnostic metabolites and corrosion was evident by elevated levels of Fe, Mn, Ni and Cu in all ballast samples relative to seawater. The findings argue that marine microbial communities rapidly shift from aerobic to anaerobic hydrocarbonoclastic-dominated assemblages that accelerate fuel and infrastructure deterioration.


2021 ◽  
Vol 9 (12) ◽  
pp. 2425
Author(s):  
Hiie Nõlvak ◽  
Nga Phuong Dang ◽  
Marika Truu ◽  
Angela Peeb ◽  
Kertu Tiirik ◽  
...  

The development of oil exploration activities and an increase in shipping in Arctic areas have increased the risk of oil spills in this cold marine environment. The objective of this experimental study was to assess the effect of biostimulation on microbial community abundance, structure, dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic seawater. The combination of amplicon-based and shotgun sequencing, together with the integration of genome-resolved metagenomics and omics data, was applied to assess microbial community structure and metabolic properties in naphthenic crude oil-amended microcosms. The comparison of estimates for oil-degrading microbial taxa obtained with different sequencing and taxonomic assignment methods showed substantial discrepancies between applied methods. Consequently, the data acquired with different methods was integrated for the analysis of microbial community structure, and amended with quantitative PCR, producing a more objective description of microbial community dynamics and evaluation of the effect of biostimulation on particular microbial taxa. Implementing biostimulation of the seawater microbial community with the addition of nutrients resulted in substantially elevated prokaryotic community abundance (103-fold), a distinctly different bacterial community structure from that in the initial seawater, 1.3-fold elevation in the normalized abundance of hydrocarbon degradation genes, and 12% enhancement of crude oil biodegradation. The bacterial communities in biostimulated microcosms after four months of incubation were dominated by Gammaproteobacterial genera Pseudomonas, Marinomonas, and Oleispira, which were succeeded by Cycloclasticus and Paraperlucidibaca after eight months of incubation. The majority of 195 compiled good-quality metagenome-assembled genomes (MAGs) exhibited diverse hydrocarbon degradation gene profiles. The results reveal that biostimulation with nutrients promotes naphthenic oil degradation in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve bioremediation goals within a reasonable timeframe.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2882
Author(s):  
Khadeeja Rehman ◽  
Muhammad Arslan ◽  
Jochen A. Müller ◽  
Muhammad Saeed ◽  
Asma Imran ◽  
...  

Floating treatment wetlands (FTWs) are cost-effective systems for the remediation of polluted water. In FTWs, the metabolic activity of microorganisms associated with plants is fundamental to treatment efficiency. Bioaugmentation, the addition of microorganisms with pollutant-degrading capabilities, appears to be a promising means to enhance the treatment efficiency of FTWs. Here, we quantified the effect of bioaugmentation with a four-membered bacterial consortium on the remediation of water contaminated with crude oil in pilot-scale FTWs planted with Phragmites australis or Typha domingensis. The bacteria had been isolated from the endosphere and rhizosphere of various plants and carry the alkane hydroxylase gene, alkB, involved in aerobic hydrocarbon degradation. During a treatment period of 36 days, FTWs planted with P. australis achieved a reduction in hydrocarbon concentration from 300 mg/L to 16 mg/L with and 56 mg/L without bioaugmentation. In the FTWs planted with T. domingensis, respective hydrocarbon concentrations were 46 mg/L and 84 mg/L. The inoculated bacteria proliferated in the rhizoplane and in the plant interior. Copy numbers of the alkB gene and its mRNA increased over time in plant-associated samples, suggesting increased bacterial hydrocarbon degradation. The results show that bioaugmentation improved the treatment of oil-contaminated water in FTWs by at least a factor of two, indicating that the performance of full-scale systems can be improved at only small costs.


mSystems ◽  
2021 ◽  
Author(s):  
Amanda M. Achberger ◽  
Shawn M. Doyle ◽  
Makeda I. Mills ◽  
Charles P. Holmes ◽  
Antonietta Quigg ◽  
...  

Vast quantities of oil-associated marine snow (MOS) formed in the water column as part of the natural biological response to the Deepwater Horizon drilling accident. Despite the scale of the event, uncertainty remains about the mechanisms controlling MOS formation and its impact on the environment.


Sign in / Sign up

Export Citation Format

Share Document