scholarly journals An Algorithm to Quantify Inducible Protein Condensates In Eukaryotic Cells

2021 ◽  
Author(s):  
Jeremy C Hunn ◽  
Katherine M. Hutchinson ◽  
Joshua B Kelley ◽  
Daniel Reines

Reorganization of cellular proteins into subcellular compartments, such as the rearrangement of RNA-binding proteins into cytoplasmic stress granules and P-bodies, is a well-recognized, widely studied physiological process currently under intense investigation. Using the assembly of a novel, inducible, nuclear granule formed from the east RNA-binding transcription termination factors Nab3 and Nrd1, we present a freely-accessible, high-throughput and unbiased algorithm written in MATLAB that detects and measures protein distribution, partitioning, and sequestration into subcellular compartments captured by fluorescence microscopy; an invaluable advancement to current image analysis methods which utilize experiment-specific custom scripts or subjective manual counting. Employing our algorithm, we quantified thousands of cells, ensuring rigorous examination of Nab3 granule formation across strains with reproducible statistical analyses. We document strain differences in Nab3 granule formation and an associated growth defect. Additionally, we applied our algorithm to immunofluorescent images of the inducible polymerization into filaments of an enzyme in human cells, demonstrating the algorithms versatility and adaptability.

2021 ◽  
Author(s):  
Nicolai von Kuegelgen ◽  
Samantha Mendonsa ◽  
Sayaka Dantsuji ◽  
Maya Ron ◽  
Marieluise Kirchner ◽  
...  

Cells adopt highly polarized shapes and form distinct subcellular compartments largely due to the localization of many mRNAs to specific areas, where they are translated into proteins with local functions. This mRNA localization is mediated by specific cis-regulatory elements in mRNAs, commonly called "zipcodes." Their recognition by RNA-binding proteins (RBPs) leads to the integration of the mRNAs into macromolecular complexes and their localization. While there are hundreds of localized mRNAs, only a few zipcodes have been characterized. Here, we describe a novel neuronal zipcode identification protocol (N-zip) that can identify zipcodes across hundreds of 3'UTRs. This approach combines a method of separating the principal subcellular compartments of neurons - cell bodies and neurites - with a massively parallel reporter assay. Our analysis identifies the let-7 binding site and (AU)n motif as de novo zipcodes in mouse primary cortical neurons and suggests a strategy for detecting many more.


2012 ◽  
Vol 40 (6) ◽  
pp. 1416-1420 ◽  
Author(s):  
Mary W. McCaffrey ◽  
Andrew J. Lindsay

Mammals express three class V myosins. Myosin Va is widely expressed, but enriched in the brain, testes and melanocytes, myosin Vb is expressed ubiquitously, and myosin Vc is believed to be epithelium-specific. Myosin Va is the best characterized of the three and plays a key role in the transport of cargo to the plasma membrane. Its cargo includes cell-surface receptors, pigment and organelles such as the endoplasmic reticulum. It is also emerging that RNA and RNA-BPs (RNA-binding proteins) make up another class of myosin Va cargo. It has long been established that the yeast class V myosin, Myo4p, transports mRNAs along actin cables into the growing bud, and now several groups have reported a similar role for class V myosins in higher eukaryotes. Myosin Va has also been implicated in the assembly and maintenance of P-bodies (processing bodies), cytoplasmic foci that are involved in mRNA storage and degradation. The present review examines the evidence that myosin Va plays a role in the transport and turnover of mRNA.


2013 ◽  
Vol 24 (2) ◽  
pp. 85-99 ◽  
Author(s):  
Ting-Xi Yu ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
Lan Xiao ◽  
...  

RNA-binding proteins CUG-binding protein 1 (CUGBP1) and HuR are highly expressed in epithelial tissues and modulate the stability and translation of target mRNAs. Here we present evidence that CUGBP1 and HuR jointly regulate the translation of occludin and play a crucial role in the maintenance of tight junction (TJ) integrity in the intestinal epithelial cell monolayer. CUGBP1 and HuR competed for association with the same occludin 3′-untranslated region element and regulated occludin translation competitively and in opposite directions. CUGBP1 overexpression decreased HuR binding to occludin mRNA, repressed occludin translation, and compromised the TJ barrier function, whereas HuR overexpression inhibited CUGBP1 association with occludin mRNA and promoted occludin translation, thereby enhancing the barrier integrity. Repression of occludin translation by CUGBP1 was due to the colocalization of CUGBP1 and tagged occludin RNA in processing bodies (P-bodies), and this colocalization was prevented by HuR overexpression. These findings indicate that CUGBP1 represses occludin translation by increasing occludin mRNA recruitment to P-bodies, whereas HuR promotes occludin translation by blocking occludin mRNA translocation to P-bodies via the displacement of CUGBP1.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ravi Kumar Alluri ◽  
Zhongwei Li ◽  
Keith R. McCrae

Reactive oxygen species (ROS) generated under oxidative stress (OS) cause oxidative damage to RNA. Recent studies have suggested a role for oxidized RNA in several human disorders. Under the conditions of oxidative stress, mRNAs released from polysome dissociation accumulate and initiate stress granule (SG) assembly. SGs are highly enriched in mRNAs, containing inverted repeat (IR) Alus in 3′ UTRs, AU-rich elements, and RNA-binding proteins. SGs and processing bodies (P-bodies) transiently interact through a docking mechanism to allow the exchange of RNA species. However, the types of RNA species exchanged, and the mechanisms and outcomes of exchange are still unknown. Specialized RNA-binding proteins, including adenosine deaminase acting on RNA (ADAR1-p150), with an affinity toward inverted repeat Alus, and Tudor staphylococcal nuclease (Tudor-SN) are specifically recruited to SGs under OS along with an RNA transport protein, Staufen1 (STAU1), but their precise biochemical roles in SGs and SG/P-body docking are uncertain. Here, we critically review relevant literature and propose a hypothetical mechanism for the processing and decay of oxidized-RNA in SGs/P-bodies, as well as the role of ADAR1-p150, Tudor-SN, and STAU1.


2015 ◽  
Author(s):  
Gregory A. Cary ◽  
Dani B.N. Vinh ◽  
Patrick May ◽  
Rolf Kuestner ◽  
Aimee M. Dudley

P-bodies (PB) are ribonucleoprotein (RNP) complexes that aggregate into cytoplasmic foci when cells are exposed to stress. While the conserved mRNA decay and translational repression machineries are known components of PB, how and why cells assemble RNP complexes into large foci remain unclear. Using mass spectrometry to analyze proteins immunoisolated with the core PB protein Dhh1, we show that a considerable number of proteins contain low-complexity (LC) sequences, similar to proteins highly represented in mammalian RNP granules. We also show that the Hsp40 chaperone Ydj1, which contains an LC domain and controls prion protein aggregation, is required for the formation of Dhh1-GFP foci upon glucose depletion. New classes of proteins that reproducibly co-enrich with Dhh1-GFP during PB induction include proteins involved in nucleotide or amino acid metabolism, glycolysis, tRNA aminoacylation, and protein folding. Many of these proteins have been shown to form foci in response to other stresses. Finally, analysis of RNA associated with Dhh1-GFP shows enrichment of mRNA encoding the PB protein Pat1 and catalytic RNAs along with their associated mitochondrial RNA-binding proteins, suggesting an active role for RNA in PB function. Thus, global characterization of PB composition has uncovered proteins and RNA that are important for PB assembly.


2020 ◽  
Author(s):  
Amanjot Singh ◽  
Joern Huelsmeier ◽  
Arvind Reddy Kandi ◽  
Sai Shruti Pothapragada ◽  
Jens Hillebrand ◽  
...  

ABSTRACTAtaxin-2 is a conserved translational control protein associated with spinocerebellar ataxia type II (SCA2) and amyotrophic lateral sclerosis (ALS) as well as an important target for ALS therapeutics under development. Despite its clinical and biological significance, Ataxin-2’s activities, mechanisms and functions are not well understood. While Drosophila Ataxin-2 (Atx2) mediates mRNP condensation via a C-terminal intrinsically disordered domain (cIDR), how Ataxin-2 IDRs work with structured (Lsm, Lsm-AD and PAM2) domains to enable positive and negative regulation of target mRNAs remains unclear. Using TRIBE (Targets of RNA-Binding Proteins Identified by Editing) technology, we identified and analysed Atx-2 target mRNAs in the Drosophila brain. We show that Atx2 preferentially interacts with AU-rich elements (AREs) in 3’UTRs and plays a broad role in stabilization of identified target mRNAs. Strikingly, Atx2 interaction with its targets is dependent on the cIDR domain required for neuronal-granule formation. In contrast, Atx2 lacking its Lsm domain not only interacts more efficiently with the target mRNA identified, but also forms larger RNP granules. Providing an extensive dataset of Atx2-interacting brain mRNAs, our results demonstrate that Atx2: (a) interacts with target mRNAs within RNP granules; (b) modulates the turnover of these target mRNAs; (c) has an additional essential role outside of mRNP granules; and (d) contains distinct protein domains that drive or oppose RNP-granule assembly. These findings increase understanding of neuronal translational control mechanisms and inform Ataxin-2-based interventions in development for SCA2 and ALS.


2019 ◽  
Author(s):  
Ye Fu ◽  
Xiaowei Zhuang

AbstractDiverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of m6A-modified mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are crucial for SG formation. Super-resolution imaging further reveals that YTHDF proteins are in a super-saturated state, forming clusters that reside in the periphery of and at the junctions between SG core clusters, and promote SG phase separation by reducing the activation energy barrier and critical size for condensate formation. Our results reveal a new function and mechanistic insights of the m6A-binding YTHDF proteins in regulating phase separation.


2019 ◽  
Vol 35 (14) ◽  
pp. i333-i342 ◽  
Author(s):  
Zichao Yan ◽  
Eric Lécuyer ◽  
Mathieu Blanchette

Abstract Motivation Messenger RNA subcellular localization mechanisms play a crucial role in post-transcriptional gene regulation. This trafficking is mediated by trans-acting RNA-binding proteins interacting with cis-regulatory elements called zipcodes. While new sequencing-based technologies allow the high-throughput identification of RNAs localized to specific subcellular compartments, the precise mechanisms at play, and their dependency on specific sequence elements, remain poorly understood. Results We introduce RNATracker, a novel deep neural network built to predict, from their sequence alone, the distributions of mRNA transcripts over a predefined set of subcellular compartments. RNATracker integrates several state-of-the-art deep learning techniques (e.g. CNN, LSTM and attention layers) and can make use of both sequence and secondary structure information. We report on a variety of evaluations showing RNATracker’s strong predictive power, which is significantly superior to a variety of baseline predictors. Despite its complexity, several aspects of the model can be isolated to yield valuable, testable mechanistic hypotheses, and to locate candidate zipcode sequences within transcripts. Availability and implementation Code and data can be accessed at https://www.github.com/HarveyYan/RNATracker. Supplementary information Supplementary data are available at Bioinformatics online.


2011 ◽  
Vol 192 (6) ◽  
pp. 929-937 ◽  
Author(s):  
Momoyo Hanazawa ◽  
Masafumi Yonetani ◽  
Asako Sugimoto

Germ granules are germ lineage–specific ribonucleoprotein (RNP) complexes, but how they are assembled and specifically segregated to germ lineage cells remains unclear. Here, we show that the PGL proteins PGL-1 and PGL-3 serve as the scaffold for germ granule formation in Caenorhabditis elegans. Using cultured mammalian cells, we found that PGL proteins have the ability to self-associate and recruit RNPs. Depletion of PGL proteins from early C. elegans embryos caused dispersal of other germ granule components in the cytoplasm, suggesting that PGL proteins are essential for the architecture of germ granules. Using a structure–function analysis in vivo, we found that two functional domains of PGL proteins contribute to germ granule assembly: an RGG box for recruiting RNA and RNA-binding proteins and a self-association domain for formation of globular granules. We propose that self-association of scaffold proteins that can bind to RNPs is a general mechanism by which large RNP granules are formed.


2021 ◽  
Author(s):  
Marina Chekulaeva ◽  
Nicolai von Kügelgen ◽  
Samantha Mendonsa ◽  
Sayaka Dantsuji ◽  
Maya Ron ◽  
...  

Abstract Cells adopt highly polarized shapes and form distinct subcellular compartments largely due to the localization of many mRNAs to specific areas, where they are translated into proteins with local functions. This mRNA localization is mediated by specific cis-regulatory elements in mRNAs, commonly called "zipcodes." Their recognition by RNA-binding proteins (RBPs) leads to the integration of the mRNAs into macromolecular complexes and their localization. While there are hundreds of localized mRNAs, only a few zipcodes have been characterized. Here, we describe a novel neuronal zipcode identification protocol (N-zip) that can identify zipcodes across hundreds of 3'UTRs. This approach combines a method of separating the principal subcellular compartments of neurons – cell bodies and neurites - with a massively parallel reporter assay. Our analysis identifies the let-7 binding site and (AU)n motif as de novo zipcodes in mouse primary cortical neurons and suggests a strategy for detecting many more.


Sign in / Sign up

Export Citation Format

Share Document