cell monolayer
Recently Published Documents


TOTAL DOCUMENTS

969
(FIVE YEARS 302)

H-INDEX

67
(FIVE YEARS 13)

Author(s):  
Fuxiao Liu ◽  
Bo Ni ◽  
Rong Wei

Senecavirus A (SVA), classified into the genus Senecavirus in the family Picornaviridae, causes an infectious disease in pigs. This virus can efficiently replicate in some non-pig-derived cells, such as the BHK cell line and its derivative (BSR-T7/5 cell line). We had recovered a wild-type SVA from its cDNA clone previously, and then uncovered the proteomic profile of SVA-infected BSR-T7/5 cells at 12 h post inoculation (hpi). In order to explore the cellular metabolomics further, the SVA-inoculated BSR-T7/5 cell monolayer was collected at 12 hpi for assay via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The resultant data set was comprehensively analyzed using bioinformatics tools. A total of 451 metabolites were identified using in-house and public databases. Out of these metabolites, sixty-one showed significantly differential values (p value < 0.05). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to analyze metabolic pathways of the significantly differential metabolites. There were eighty-one identified KEGG pathways, out of which twenty-seven showed their p values < 0.05. The pyrimidine metabolism revealed the minimum p value and the maximum number of significantly differential metabolites, implying the pyrimidine played a key role in cellular metabolism after SVA infection. SVA replication must rely on the cellular metabolism. The present study on metabolomics would shed light on impacts of SVA-induced multiple interactions among metabolites on cells or even on natural hosts.


Nutrients ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 210
Author(s):  
Ailén Alemán ◽  
Daniel Marín-Peñalver ◽  
Pilar Fernández de Palencia ◽  
María del Carmen Gómez-Guillén ◽  
Pilar Montero

A sea fennel (Crithmum maritimum) aqueous extract was prepared and loaded into soybean phosphatidylcholine liposomes. Both the free extract (FE), and the empty (L) and loaded (L-FE) liposomes were shown to be non-cytotoxic to THP-1 and Caco-2 cells. The anti-inflammatory effect was tested on THP-1 cells differentiated into macrophages. FE showed anti-inflammatory activity, revealed by the induced secretion of IL-10 cytokines in macrophages that were subsequently stimulated with LPS. Also, a decrease in TNF-α production by L was observed, evidencing that liposomes reduced the pro-inflammatory mediators’ secretion. The liposomes (L) showed protective anti-inflammatory activity and also were able to downregulate the inflammation. Furthermore, L-FE were also found to downregulate the inflammation response, as they were able to decrease TNF-α secretion in macrophages previously exposed to LPS. The simulated in vitro gastrointestinal digestion (GID) of FE diminished the chlorogenic acid content (the main polyphenolic compound of the extract) by 40%, while in L-FE, the amount of this phenolic compound increased with respect to the undigested liposomes. The amount of bioaccessible chlorogenic, however, was similar for FE and L-FE. The percentage of chlorogenic acid absorbed through a Caco-2 cell monolayer after 3 h of incubation, was significantly similar for the extract and the liposomes (~1.5%), without finding significant differences once the extract and liposomes were digested.


Author(s):  
Amy A. Sutton ◽  
Clayton W. Molter ◽  
Ali Amini ◽  
Johanan Idicula ◽  
Max Furman ◽  
...  

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Denitsa Kiradzhiyska ◽  
Nikolina Milcheva ◽  
Rositsa Mancheva ◽  
Tsvetelina Batsalova ◽  
Balik Dzhambazov ◽  
...  

The present study reports a specific method for preparation of silver-modified anodic alumina substrates intended for biomaterial applications. Al2O3 coatings were obtained by anodization of technically pure aluminum alloy in sulfuric acid electrolyte. Silver deposition into the pores of the anodic structures was carried out employing in situ thermal reduction for different time periods. The obtained coatings were characterized using scanning electron microscopy (SEM), potentiodynamic scanning after 168 h in 3.5% NaCl solution and bioassays with human fibroblast and NIH/3T3 cell lines. The modified alumina substrates demonstrated better biocompatibility compared to the control anodic Al2O3 pads indicated by increased percent cell survival following in vitro culture with human and mouse fibroblasts. The Ag-deposition time did not affect considerably the biocompatibility of the investigated anodic layers. SEM analyses indicated that mouse NIH/3T3 cells and human fibroblasts adhere to the silver-coated alumina substrates retaining normal morphology and ability to form cell monolayer. Therefore, the present studies demonstrate that silver coating of anodic alumina substrates improves their biocompatibility and their eventual biomedical application.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 122
Author(s):  
Keiichiro Sugimoto ◽  
Midori Amako ◽  
Hiroaki Takeuchi ◽  
Kazuya Nakagawa ◽  
Morio Yoshimura ◽  
...  

Inhibition of fructose absorption may suppress adiposity and adiposity-related diseases caused by fructose ingestion. Eucalyptus leaf extract (ELE) inhibits intestinal fructose absorption (but not glucose absorption); however, its active compound has not yet been identified. Therefore, we evaluated the inhibitory activity of ELE obtained from Eucalyptus globulus using an intestinal fructose permeation assay with the human intestinal epithelial cell line Caco-2. The luminal sides of a cell monolayer model cultured on membrane filters were exposed to fructose with or without the ELE. Cellular fructose permeation was evaluated by measuring the fructose concentration in the medium on the basolateral side. ELE inhibited 65% of fructose absorption at a final concentration of 1 mg/mL. Oenothein B isolated from the ELE strongly inhibited fructose absorption; the inhibition rate was 63% at a final concentration of 5 μg/mL. Oenothein B did not affect glucose absorption. In contrast, the other major constituents (i.e., gallic acid and ellagic acid) showed little fructose-inhibitory activity. To our knowledge, this is the first report that oenothein B in ELE strongly inhibits fructose absorption in vitro. ELE containing oenothein B can prevent and ameliorate obesity and other diseases caused by dietary fructose consumption.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7648
Author(s):  
Nunzia Gallo ◽  
Maria Lucia Natali ◽  
Claudia Curci ◽  
Angela Picerno ◽  
Anna Gallone ◽  
...  

Urethral stenosis is a pathological condition that consists in the narrowing of the urethral lumen because of the formation of scar tissue. Unfortunately, none of the current surgical approaches represent an optimal solution because of the high stricture recurrence rate. In this context, we preliminarily explored the potential of an insoluble type-I collagen from horse tendon as scaffolding material for the development of innovative devices for the regeneration of injured urethral tracts. Non-porous collagen-based substrates were produced and optimized, in terms of crosslinking density of the macromolecular structure, to either provide mechanical properties compliant with the urinary tract physiological stress and better sustain tissue regeneration. The effect of the adopted crosslinking strategy on the protein integrity and on the substrate physical–chemical, mechanical and biological properties was investigated in comparison with a decellularized matrix from porcine small intestinal submucosa (SIS patch), an extensively used xenograft licensed for clinical use in urology. The optimized production protocols allowed the preservation of the type I collagen native structure and the realization of a substrate with appealing end-use properties. The biological response, preliminarily investigated by immunofluorescence experiments on human adult renal stem/progenitor cells until 28 days, showed the formation of a stem-cell monolayer within 14 days and the onset of spheroids within 28 days. These results suggested the great potential of the collagen-based material for the development of scaffolds for urethral plate regeneration and for in vitro cellular studies.


2021 ◽  
Author(s):  
Yuan Qiu ◽  
Chen-Chi Chien ◽  
Basilis Maroulis ◽  
Angelo Gaitas ◽  
Bin Gong

Abstract In this article, a review of the application of atomic force microscopy (AFM) for the analyses of extracellular vesicles is presented. This information is then extended to include fluidic Atomic Force Microscopy (fluidic AFM) applications. Fluidic AFM is an offshoot of AFM that combines a microfluidic cantilever with AFM and has enabled the research community to conduct biological, pathological, and pharmacological studies on cells at the single-cell level in a liquid environment. AFM applications involving single cell and extracellular vesicle studies, colloidal force spectroscopy, and single cell adhesion measurements are discussed. In this review, new results are offered, using fluidic AFM, to illustrate (1) the speed with which sequential measurements of adhesion using coated colloid beads can be done, (2) the ability to assess lateral binding forces (LBFs) of endothelial or epithelial cells in a confluent cell monolayer in appropriate physiological environment, and (3) the ease of measurement of vertical binding force (VBFs) of intercellular adhesion between heterogeneous cells. Finally, key applications are discussed that include extracellular vesicle absorption, manipulation of a single living cell by intracellular injection, sampling of cellular fluid from a single living cell, patch clamping, and mass measurements of a single living cell.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenyan Wang ◽  
Guangying Du ◽  
Shilan Lin ◽  
Jing Liu ◽  
Huijie Yang ◽  
...  

Valbenazine and deutetrabenazine are the only two therapeutic drugs approved for tardive dyskinesia based on blocking the action of vesicular monoamine transporter 2 (VMAT2). But there exist demethylated inactive metabolism at the nine position for both them resulting in low availability, and CYP2D6 plays a major role in this metabolism resulting in the genetic polymorphism issue. 9-trifluoroethoxy-dihydrotetrabenazine (13e) was identified as a promising lead compound for treating tardive dyskinesia. In this study, we separated 13e via chiral chromatography and acquired R,R,R-13e [(+)-13e] and S,S,S-13e [(−)-13e], and we investigated their VMAT2-inhibitory activity and examined the related pharmacodynamics and pharmacokinetics properties using in vitro and in vivo models (+)-13e displayed high affinity for VMAT2 (Ki = 1.48 nM) and strongly inhibited [3H]DA uptake (IC50 = 6.11 nM) in striatal synaptosomes. Conversely, its enantiomer was inactive. In vivo, (+)-13e decreased locomotion in rats in a dose-dependent manner. The treatment had faster, stronger, and longer-lasting effects than valbenazine at an equivalent dose. Mono-oxidation was the main metabolic pathway in the liver microsomes and in dog plasma after oral administration, and glucuronide conjugation of mono-oxidized and/or demethylated products and direct glucuronide conjugation were also major metabolic pathways in dog plasma. O-detrifluoroethylation of (+)-13e did not occur. Furthermore, CYP3A4 was identified as the primary isoenzyme responsible for mono-oxidation and demethylation metabolism, and CYP2C8 was a secondary isoenzyme (+)-13e displayed high permeability across the Caco-2 cell monolayer, and it was not a P-glycoprotein substrate as demonstrated by its high oral absolute bioavailability (75.9%) in dogs. Thus, our study findings highlighted the potential efficacy and safety of (+)-13e in the treatment of tardive dyskinesia. These results should promote its clinical development.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1278
Author(s):  
Xuexiang Chen ◽  
Meigui Huang ◽  
Dongmei Liu ◽  
Yongze Li ◽  
Qiu Luo ◽  
...  

Carnosic acid (CA) is a phenolic diterpenoid mainly found in rosemary and sage. CA has been reported to possess health-beneficial effects in various experimental settings. Herein, a mouse experiment and Caco-2 single-cell model were used to understand the absorption and transport characteristics of CA. First, we determined the tissue distribution of CA in mice, following an oral gavage at a physiologically relevant dose. We found that CA was bioavailable systemically and present locally in the digestive tract, especially in the cecum and colon. Next, we thought to characterize the absorption and transport of CA in the Caco-2 cell monolayer model of the intestinal epithelial barrier. In the Caco-2 cell model, CA exhibited a moderate permeability and was subjected to a mild efflux. Moreover, the apparent permeability coefficient (Papp) of CA transported across Caco-2 cell monolayers was significantly changed when the inhibitors of specific active transporter and passive diffusion were added to cells, suggesting that the absorption and transport of CA involved both passive and active transportation. The present study is an important first step towards understanding the absorption, transport, and metabolic mechanisms of CA. This could provide the scientific basis for developing CA-containing functional foods or dietary supplements with improved bioavailability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joshua Luchan ◽  
Christian Choi ◽  
Rebecca L. Carrier

AbstractInteractions between epithelial and immune cells with the gut microbiota have wide-ranging effects on many aspects of human health. Therefore, there is value in developing in vitro models capable of performing highly controlled studies of such interactions. However, several critical factors that enable long term homeostasis between bacterial and mammalian cultures have yet to be established. In this study, we explored a model consisting of epithelial and immune cells, as well as four different bacterial species (Bacteroides fragilis KLE1958, Escherichia coli MG1655, Lactobacillus rhamnosus KLE2101, or Ruminococcus gnavus KLE1940), over a 50 hour culture period. Interestingly, both obligate and facultative anaerobes grew to similar extents in aerobic culture environments during the co-culture period, likely due to measured microaerobic oxygen levels near the apical surface of the epithelia. It was demonstrated that bacteria elicited reactive oxygen species (ROS) production, and that the resulting oxidative damage heavily contributed to observed epithelial barrier damage in these static cultures. Introduction of a ROS scavenger significantly mitigated oxidative damage, improving cell monolayer integrity and reducing lipid peroxidation, although not to control (bacteria-free culture) levels. These results indicate that monitoring and mitigating ROS accumulation and oxidative damage can enable longer term bacteria-intestinal epithelial cultures, while also highlighting the significance of additional factors that impact homeostasis in mammalian cell-bacteria systems.


Sign in / Sign up

Export Citation Format

Share Document