scholarly journals Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad

2021 ◽  
Author(s):  
Chloé Mayère ◽  
Violaine Regard ◽  
Aitana Perea-Gomez ◽  
Corey Bunce ◽  
Yasmine Neirijnck ◽  
...  

Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLC) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially co-express Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a Sertoli- or granulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Finally, we found that WNT4 is a crucial regulator of the SLC lineage and is required for the formation of the rete testis.

Development ◽  
2010 ◽  
Vol 138 (2) ◽  
pp. 227-235 ◽  
Author(s):  
F. L. A. F. Gomes ◽  
G. Zhang ◽  
F. Carbonell ◽  
J. A. Correa ◽  
W. A. Harris ◽  
...  

2021 ◽  
Author(s):  
Caroline Malin-Mayor ◽  
Peter Hirsch ◽  
Leo Guignard ◽  
Katie McDole ◽  
Yinan Wan ◽  
...  

We present a method for automated nucleus identification and tracking in time-lapse microscopy recordings of entire developing embryos. Our method combines deep learning and global optimization to enable complete lineage reconstruction from sparse point annotations, and uses parallelization to process multi-terabyte light-sheet recordings, which we demonstrate on three common model organisms: mouse, zebrafish, Drosophila. On the most difficult dataset (mouse), our method correctly reconstructs 75.8% of cell lineages spanning 1 hour, compared to 31.8% for the previous state of the art, thus enabling biologists to determine where and when cell fate decisions are made in developing embryos, tissues, and organs.


2016 ◽  
Vol 65 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Charles E. Rogler ◽  
Remon Bebawee ◽  
Joe Matarlo ◽  
Joseph Locker ◽  
Nicole Pattamanuch ◽  
...  

Recent investigations have reported many markers associated with human liver stem/progenitor cells, “oval cells,” and identified “niches” in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as “micro-niches.” Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.


Development ◽  
2021 ◽  
Author(s):  
Sophie Colombo ◽  
Valérie Petit ◽  
Roselyne Y. Wagner ◽  
Delphine Champeval ◽  
Ichiro Yajima ◽  
...  

The canonical Wnt/β-catenin pathway governs a multitude of developmental processes in various cell lineages, including the melanocyte lineage. Indeed, β-catenin regulates Mitf-M transcription, the master regulator of this lineage. The first wave of melanocytes to colonize the skin is directly derived from neural crest cells, while the second wave of melanocytes is derived from Schwann-cell precursors (SCPs). We investigated the influence of β-catenin in the development of melanocytes of the first and second waves by generating mice expressing a constitutively active form of β-catenin in cells expressing tyrosinase. Constitutive activation of β-catenin did not affect the development of truncal melanoblasts but led to marked hyperpigmentation of the paws. By activating β-catenin at various stages of development (E8.5-E11.5), we showed that the activation of β-catenin in bipotent SCPs favored melanoblast specification at the expense of Schwann cells in the limbs within a specific temporal window. Furthermore, in vitro hyperactivation of the Wnt/β-catenin pathway, which is required for melanocyte development, induces activation of Mitf-M, in turn repressing FoxD3 expression. In conclusion, β-catenin overexpression promotes SCP cell fate decisions towards the melanocyte lineage.


Sign in / Sign up

Export Citation Format

Share Document